設(shè)a,b是兩條不同直線,α,β是兩個(gè)不同平面,下列四個(gè)命題中正確的是( 。
A、若a,b與α所成的角相等,則a∥b
B、若a∥α,b∥β,α∥β,則a∥b
C、若a⊥α,b⊥β,α⊥β,則a⊥b
D、若a?α,b?β,a∥b,則α∥β
考點(diǎn):命題的真假判斷與應(yīng)用,空間中直線與平面之間的位置關(guān)系
專題:綜合題,空間位置關(guān)系與距離
分析:對(duì)四個(gè)選項(xiàng)中的命題依據(jù)相關(guān)的立體幾何知識(shí)逐一判斷即可
解答: 解:對(duì)于選項(xiàng)A,將一個(gè)圓錐放到平面上,則它的每條母線與平面所成的角都是相等的,故“若a,b與α所成的角相等,則a∥b“錯(cuò);
對(duì)于選項(xiàng)B,若a∥α,b∥β,α∥β,則a與b位置關(guān)系可能是平行,相交或異面,故B錯(cuò);
對(duì)于選項(xiàng)C,若a⊥α,b⊥β,α⊥β,則a⊥b是正確的,兩個(gè)平面垂直時(shí),與它們垂直的兩個(gè)方向一定是垂直的;
對(duì)于選項(xiàng)D,由面面平行的定理知,一個(gè)面中兩條相交線分別平行于另一個(gè)平面中的兩條線才能得出面面平行,故D錯(cuò).
故選C.
點(diǎn)評(píng):本題以立體幾何中線面位置關(guān)系為題面考查了命題真假的判斷,熟練掌握空間中點(diǎn)線面的位置關(guān)系是解答的關(guān)鍵
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊經(jīng)過點(diǎn)P(-5,12),則sin(-π-α)-2cos(π-α)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于下列結(jié)論:
(1)平面內(nèi)到兩定點(diǎn)A(-2,0)和B(2,0)距離之和為4的點(diǎn)M的軌跡是橢圓;
(2)平面內(nèi)與一個(gè)定點(diǎn)A(1,3)和一條定直線l:2x+3y-11=0距離相等的點(diǎn)M的軌跡是拋物線;
(3)在平面直角坐標(biāo)系中,若方程m(x2+y2+2y+1)=(x-2y+3)2表示的曲線為橢圓,則實(shí)數(shù)m的取值范圍是(
5
,+∞);
(4)若不等式ax2+bx+c>0的解集是{x|-4<x<1},則不等式b(x2-1)+a(x+3)+c>0的解集為{x|-
4
3
<x<1};
(5)已知數(shù)列{an}滿足a1=33,an+1-an=2n,則
an
n
的最小值為
21
2
. 
其中正確的是(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x2-x-2≤0},N={x|x-a<0},若M∩N≠∅,則a的范圍為( 。
A、(-1,+∞)
B、[-1,+∞)
C、(-∞,2]
D、(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c的導(dǎo)數(shù)為f′(x),f′(0)>0,并且函數(shù)y=
f(x)
的定義域?yàn)镽,則
f(1)
f′(0)
的最小值為( 。
A、
5
2
B、
3
2
C、3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一個(gè)幾何體的三視圖如圖所示(單位長度:cm),則此幾何體的體積是( 。
A、
32
3
B、64
C、
224
3
D、
229
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-sin2x-3cosx+3的最小值是( 。
A、2
B、0
C、
1
4
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1、x2是函數(shù)f(x)=
ex
x
-3的兩個(gè)零點(diǎn),若a<x1<x2,則f(a)的值是(  )
A、f(a)=0
B、f(a)>0
C、f(a)<0
D、f(a)的符號(hào)不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|).
(1)求實(shí)數(shù)a,b的值;
(2)若不等式f(log2k)>f(2)成立,求實(shí)數(shù)k的取值范圍;
(3)對(duì)于任意滿足p=x0<x1<x2<…<xn-1<xn=q(n∈N*,n≥3)的自變量x0,x1,x2,…,xn,如果存在一個(gè)常數(shù)M>0,使得定義在區(qū)間[p,q]上的一個(gè)函數(shù)m(x),|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|≤M恒成立,則稱函數(shù)m(x)為區(qū)間[p,q]上的有界變差函數(shù).試判斷函數(shù)f(x)是否區(qū)間[1,3]上的有界變差函數(shù),若是,求出M的最小值;若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案