【題目】(本小題滿分12分)某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和參加社團(tuán)活動(dòng)情況進(jìn)行調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表1所示

1


參加社團(tuán)活動(dòng)

不參加社團(tuán)活動(dòng)

合計(jì)

學(xué)習(xí)積極性高

17

8

25

學(xué)習(xí)積極性一般

5

20

25

合計(jì)

22

28

50

1)如果隨機(jī)從該班抽查一名學(xué)生,抽到參加社團(tuán)活動(dòng)的學(xué)生的概率是多少?抽到不參加社團(tuán)活動(dòng)且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?

2)運(yùn)用獨(dú)立檢驗(yàn)的思想方法分析:學(xué)生的學(xué)習(xí)積極性與參加社團(tuán)活動(dòng)情況是否有關(guān)系?并說明理由.


005

001

0001


3841

6635

10828

【答案】(1)抽到參加社團(tuán)活動(dòng)的學(xué)生的概率是,抽到不參加社團(tuán)活動(dòng)且學(xué)習(xí)積極性一般的學(xué)生的概率是;

2)有的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參加社團(tuán)活動(dòng)的態(tài)度有關(guān)系.

【解析】試題分析:(1)求出積極參加社團(tuán)活動(dòng)的學(xué)生有人,總?cè)藬?shù)為人,不參加社團(tuán)活動(dòng)且學(xué)習(xí)積極性一般的學(xué)生為人,利用古典概型即可求得概率,;

2)根據(jù)條件中所給的數(shù)據(jù),代入這組數(shù)據(jù)的觀測(cè)值的公式,求出觀測(cè)值,把觀測(cè)值同臨界值進(jìn)行比較,得到有的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參與社團(tuán)活動(dòng)情況有關(guān)系.

試題解析:(1)隨機(jī)從該班抽查一名學(xué)生,抽到參加社團(tuán)活動(dòng)的學(xué)生的概率是, 3

抽到不參加社團(tuán)活動(dòng)且學(xué)習(xí)積極性一般的學(xué)生的概率是; 6

2 , 10

的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參加社團(tuán)活動(dòng)的態(tài)度有關(guān)系. 12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若在定義域上為單調(diào)遞減函數(shù),求實(shí)數(shù)的取值范圍;

(2)是否存在實(shí)數(shù),使得恒成立且有唯一零點(diǎn),若存在,求出滿足 的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,對(duì)于任意的都有,設(shè)時(shí), .

1)求;

2)證明:對(duì)于任意的,

3)當(dāng)時(shí),若不等式上恒定成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)求證:當(dāng)時(shí), ;

(Ⅲ)若對(duì)任意恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l過點(diǎn)P (3, )且傾斜角為.在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為
(Ⅰ)求直線l的一個(gè)參數(shù)方程和圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A,B,求的值.

(2)已知函數(shù).

(Ⅰ)求函數(shù)的最小值;

(Ⅱ)若正實(shí)數(shù)滿足,且對(duì)任意的正實(shí)數(shù)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于二項(xiàng)式(x1)2 013有下列命題:

(1)該二項(xiàng)展開式中非常數(shù)項(xiàng)的系數(shù)和是1;

(2)該二項(xiàng)展開式中第六項(xiàng)為C2 0136x2 007;

(3)該二項(xiàng)展開式中系數(shù)最大的項(xiàng)是第1 007項(xiàng);

(4)當(dāng)x2 014時(shí),(x1)2 013除以2 014的余數(shù)是2 013.

其中正確命題有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, 為直角, .沿的中位線,將平面折起,使得,得到四棱錐

(Ⅰ)求證: 平面;

(Ⅱ)求三棱錐的體積;

(Ⅲ)是棱的中點(diǎn),過做平面與平面平行,設(shè)平面截四棱錐所得截面面積為,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圖①②都是表示輸出所有立方小于1 000的正整數(shù)的程序框圖,則圖中應(yīng)分別補(bǔ)充的條件為(  )

  、佟     、

A. ①n3≥1 000?、趎3<1 000?

B. ①n3≤1 000? ②n3≥1 000?

C. ①n3<1 000?、趎3≥1 000?

D. ①n3<1 000?、趎3<1 000?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓是以的中點(diǎn)為圓心, 為半徑的圓.

(Ⅰ)若圓的切線在軸和軸上截距相等,求切線方程;

(Ⅱ)若是圓外一點(diǎn),從向圓引切線, 為切點(diǎn), 為坐標(biāo)原點(diǎn),且有,求使最小的點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案