【題目】某貧困地區(qū)有1500戶居民,其中平原地區(qū)1050戶,山區(qū)450戶,為調(diào)查該地區(qū)2017年家庭收入情況,從而更好地實施“精準(zhǔn)扶貧”,采用分層抽樣的方法,收集了150戶家庭2017年年收入的樣本數(shù)據(jù)(單位:萬元)

(I)應(yīng)收集多少戶山區(qū)家庭的樣本數(shù)據(jù)?

(Ⅱ)根據(jù)這150個樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為, , , ,,.如果將頻率率視為概率,估計該地區(qū)2017年家庭收入超過1.5萬元的概率;

(Ⅲ)樣本數(shù)據(jù)中,由5戶山區(qū)家庭的年收入超過2萬元,請完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有90%的把握認為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”?

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

超過2萬元

不超過2萬元

總計

平原地區(qū)

山區(qū)

5

總計

【答案】(Ⅰ)45;(Ⅱ)0.45;(Ⅲ)答案見解析.

【解析】分析:(Ⅰ)由已知可得每戶居民被抽取的概率為,根據(jù)古典概型概率公式可得結(jié)果;(Ⅱ)由直方圖,利用符合條件矩形面積之和可求得該地區(qū)2017年家庭年收入超過萬元的概率;(Ⅲ)樣本數(shù)據(jù)中,年收入超過2萬元的戶數(shù)戶,而樣本數(shù)據(jù)中,有5戶山區(qū)家庭的年收入超過2萬元,完成列聯(lián)表,求出,即可判斷是否有的把握認為 “該地區(qū)2017年家庭年收入與地區(qū)有關(guān)” .

詳解:(Ⅰ)由已知可得每戶居民被抽取的概率為0.1,故應(yīng)收集戶山區(qū)家庭的樣本數(shù)據(jù).

(Ⅱ)由直方圖可知該地區(qū)2017年家庭年收入超過1.5萬元的概率約為

(Ⅲ)樣本數(shù)據(jù)中,年收入超過2萬元的戶數(shù)為戶.

而樣本數(shù)據(jù)中,有5戶山區(qū)家庭的年收入超過2萬元,故列聯(lián)表如下:

所以,

∴有的把握認為該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了對2016年某校中考成績進行分析,在60分以上的全體同學(xué)中隨機抽出8位,他們的數(shù)學(xué)分數(shù)(已折算為百分制)從小到大排是60、65、70、75、80、85、90、95,物理分數(shù)從小到大排是72、77、80、84、88、90、93、95. 參考公式:相關(guān)系數(shù)
回歸直線方程是: ,其中
參考數(shù)據(jù): , ,
(1)若規(guī)定85分以上為優(yōu)秀,求這8位同學(xué)中恰有3位同學(xué)的數(shù)學(xué)和物理分數(shù)均為優(yōu)秀的概率;
(2)若這8位同學(xué)的數(shù)學(xué)、物理、化學(xué)分數(shù)事實上對應(yīng)如下表:

學(xué)生編號

1

2

3

4

5

6

7

8

數(shù)學(xué)分數(shù)x

60

65

70

75

80

85

90

95

物理分數(shù)y

72

77

80

84

88

90

93

95

化學(xué)分數(shù)z

67

72

76

80

84

87

90

92

①用變量y與x、z與x的相關(guān)系數(shù)說明物理與數(shù)學(xué)、化學(xué)與數(shù)學(xué)的相關(guān)程度;
②求y與x、z與x的線性回歸方程(系數(shù)精確到0.01),當(dāng)某同學(xué)的數(shù)學(xué)成績?yōu)?0分時,估計其物理、化學(xué)兩科的得分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.

(1)求圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于點,若點的坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電腦公司有5名產(chǎn)品推銷員,其工作年限與年推銷金額的數(shù)據(jù)如表:

推銷員編號

1

2

3

4

5

工作年限

3

5

6

7

9

推銷金額萬元

2

3

3

4

5

求年推銷金額y關(guān)于工作年限x的線性回歸方程;

判斷變量xy之間是正相關(guān)還是負相關(guān);

若第6名推銷員的工作年限是11年,試估計他的年推銷金額.

(參考數(shù)據(jù),

參考公式:線性回歸方程,,其中為樣本平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).

(I)求m的值;

(II)求函數(shù)g(x)=h(x)+,x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinx+cosωx(ω>0)的圖象與x軸交點的橫坐標(biāo)依次構(gòu)成一個公差為 的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移 個單位,得到函數(shù)g(x)的圖象,則(
A.g(x)是奇函數(shù)
B.g(x)關(guān)于直線x=﹣ 對稱
C.g(x)在[ , ]上是增函數(shù)
D.當(dāng)x∈[ , ]時,g(x)的值域是[2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若c= ,△ABC的面積為 ,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期為π,且其圖象向左平移 個單位后得到函數(shù)g(x)=cosωx的圖象,則函數(shù)f(x)的圖象(
A.關(guān)于直線x= 對稱
B.關(guān)于直線x= 對稱
C.關(guān)于點( ,0)對稱
D.關(guān)于點( ,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:①函數(shù)上的值域為;②函數(shù)是奇函數(shù);③函數(shù)上是減函數(shù);其中正確的個數(shù)為______

查看答案和解析>>

同步練習(xí)冊答案