記函數(shù)f(x)=的定義域?yàn)锳,g(x)=lg的定義域?yàn)锽
(1)求A;
(2)若BA,求實(shí)數(shù)a的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知且,定義在區(qū)間內(nèi)的函數(shù)是奇函數(shù).
(1)求函數(shù)的解析式及的取值范圍;
(2)討論的單調(diào)性;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分):已知函數(shù)是奇函數(shù),并且函數(shù)的圖像經(jīng)過(guò)點(diǎn)(1,3),(1)求實(shí)數(shù)的值;(2)求函數(shù)的值域
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)關(guān)于x的函數(shù)f(x)=-1-2a+2cos2x-2acosx的最小值為g(a).(1)寫(xiě)出g(a)的表達(dá)式;(2)當(dāng)時(shí),求a的值,并求此時(shí)f(x)的最大值。(12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知函數(shù) ,且函數(shù)與的圖像關(guān)于直線對(duì)稱(chēng),又 , .
(Ⅰ) 求的值域;
(Ⅱ) 是否存在實(shí)數(shù)m,使得命題 和 滿足復(fù)合命題 為真命題?若存在,求出m的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)已知定義在上的函數(shù)滿足:
,且對(duì)于任意實(shí)數(shù),總有成立.
(1)求的值,并證明函數(shù)為偶函數(shù);
(2)若數(shù)列滿足,求證:數(shù)列為等比數(shù)列;
(3)若對(duì)于任意非零實(shí)數(shù),總有.設(shè)有理數(shù)滿足,判斷和 的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)y=f(x)(x≠0)是奇函數(shù),且當(dāng)x∈(0,+∞)時(shí)為增函數(shù),且f(1)=0。
(1)求關(guān)于t的方程f(2t+5)=0的解;
(2)求不等式f[x(x-)]<0的解集。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)已知為上的偶函數(shù),且當(dāng)≥0時(shí),,則
(1)在R上的解析式為;
(2)寫(xiě)出的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)定義在R上的函數(shù)R) 是奇函數(shù),
(1)求的值;
(2)若函數(shù)在區(qū)間上有且僅有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com