精英家教網 > 高中數學 > 題目詳情

【題目】已知,

(1)討論函數的單調性;

(2)記,設, 為函數圖象上的兩點,且

(。┊ 時,若處的切線相互垂直,求證: ;

(ⅱ)若在點處的切線重合,求的取值范圍.

【答案】(1)時, 上單調遞減,即時, 上都是單調遞減的,在上是單調遞增的;(2)(i)見解析;(ii)

【解析】試題分析:(1)求出函數的導數,通過討論 的范圍,判斷函數的單調性即可;(2)(i求出 的解析式,根據基本不等式的性質判斷即可;(ii求出 的坐標,分別求出曲線在的切線方程,結合函數的單調性確定 的范圍即可.

試題解析:(1),則,

時, , 上單調遞減,

時即時,

此時上都是單調遞減的,在上是單調遞增的;

(2)(i),據題意有,又,

,

法1: ,

當且僅當時取等號.

法2: , ,

當且僅當時取等號.

(ii)要在點處的切線重合,首先需要在點處的切線的斜率相等,

時, ,則必有,即, ,

處的切線方程是:

處的切線方程是: ,即,

據題意則, ,

, ,

上, , 上單調遞增,

,又恒成立,

即當時, 的值域是,

,即為所求.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,平面PAD底面ABCD,其中底面ABCD為等腰梯形,ADBCPAABBCCD=2,PD=2,PAPD,QPD的中點.

(Ⅰ)證明:CQ∥平面PAB;

(Ⅱ)求直線PD與平面AQC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】張先生知道清晨從甲地到乙地有好、中、差三個班次的客車.但不知道具體誰先誰后.他打算:第一輛看后一定不坐,若第二輛比第一輛舒服,則乘第二輛;否則坐第三輛.問張先生坐到好車的概率和坐到差車的概率分別是(
A. 、
B. 、
C. 、
D. 、

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ,g(x)=f(x)﹣a
(1)當a=2時,求函數g(x)的零點;
(2)若函數g(x)有四個零點,求a的取值范圍;
(3)在(2)的條件下,記g(x)得四個零點分別為x1 , x2 , x3 , x4 , 求x1+x2+x3+x4的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大學生在開學季準備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學季內,每售出盒該產品獲利潤元;未售出的產品,每盒虧損.根據歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示,該同學為這個開學季購進了盒該產品,以(單位:盒, )表示這個開學季內的市場需求量,(單位:元)表示這個開學季內經銷該產品的利潤.

1)根據直方圖估計這個開學季內市場需求量的中位數;

2)將表示為的函數;

3)根據直方圖估計利潤不少于元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(cos ,sin ), =(cos ,﹣sin ),且x∈[ ,π].
(1)求 及| + |;
(2)求函數f(x)= +| + |的最大值,并求使函數取得最大值時x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等比數列{an}的首項a1= ,公比q滿足q>0且q≠1,又已知a1 , 5a3 , 9a5成等差數列;
(1)求數列{an}的通項公式;
(2)令bn=log3 ,記Tn= ,是否存在最大的整數m,使得對任意n∈N* , 均有Tn 成立?若存在,求出m,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A、B、C所對的邊分別是a、b、c,且a+b+c=8. (Ⅰ)若a=2,b= ,求cosC的值;
(Ⅱ)若sinAcos2 +sinBcos2 =2sinC,且△ABC的面積S= sinC,求a和b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個幾何體的三視圖如圖所示,其中正視圖和側視圖是腰長為1的兩個全等的等腰直角三角形,則該幾何體的表面積是

查看答案和解析>>

同步練習冊答案