【題目】如圖,在四棱錐P—ABCD中,平面PAD⊥底面ABCD,其中底面ABCD為等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2,PA⊥PD,Q為PD的中點.
(Ⅰ)證明:CQ∥平面PAB;
(Ⅱ)求直線PD與平面AQC所成角的正弦值.
【答案】(Ⅰ)見解析;(Ⅱ) .
【解析】試題分析:
(1) 取PA的中點N,由題意證得BN∥CQ,則CQ∥平面PAB.
(2)利用題意建立空間直角坐標(biāo)系,結(jié)合平面的法向量可得直線PD與平面AQC所成角的正弦值為.
試題解析:
(Ⅰ)證明 如圖所示,取PA的中點N,連接QN,
BN.在△PAD中,PN=NA,PQ=QD,
所以QN∥AD,且QN=AD.
在△APD中,PA=2,PD=2,PA⊥PD,
所以AD==4,而BC=2,所以BC=AD.
又BC∥AD,所以QN∥BC,且QN=BC,
故四邊形BCQN為平行四邊形,所以BN∥CQ.
又BN平面PAB,且CQ平面PAB, 所以CQ∥平面PAB.
(Ⅱ)如圖,取AD的中點M,連接BM;取BM的中點O,連接BO、PO.
由(1)知PA=AM=PM=2,
所以△APM為等邊三角形,
所以PO⊥AM. 同理BO⊥AM.
因為平面PAD⊥平面ABCD,所以PO⊥BO.
如圖,以O為坐標(biāo)原點,分別以OB,OD,OP所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,則O(0,0,0),D(0,3,0),A(0,-1,0),B(,0,0),P(0,0,),C(,2,0),
則=(,3,0).
因為Q為DP的中點,故Q,所以=.
設(shè)平面AQC的法向量為m=(x,y
則可得
令y=-,則x=3,z=5. 故平面AQC的一個法向量為m=(3,-,5).
設(shè)直線PD與平面AQC所成角為θ.
則sinθ= |cos〈,m〉|==.
從而可知直線PD與平面AQC所成角正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
()當(dāng)時,求的單調(diào)區(qū)間和極值.
()若對于任意,都有成立,求的取值范圍 ;
()若且證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在物理實驗中,為了研究所掛物體的重量x對彈簧長度y的影響.某學(xué)生通過實驗測量得到物體的重量與彈簧長度的對比表:
物體重量(單位g) | 1 | 2 | 3 | 4 | 5 |
彈簧長度(單位cm) | 1.5 | 3 | 4 | 5 | 6.5 |
參考公式:
①.樣本數(shù)據(jù)x1 , x2 , …xn的標(biāo)準(zhǔn)差
s= ,其中 為樣本的平均數(shù);
②.線性回歸方程系數(shù)公式 = = , = ﹣ .
(1)畫出散點圖;
(2)利用所給的參考公式,求y對x的回歸直線方程;
(3)預(yù)測所掛物體重量為8g時的彈簧長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在一次趣味運動會的頒獎儀式上,高一、高二、高三各代表隊人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就坐,其中高二代表隊有6人.
(1)求n的值;
(2)把在前排就坐的高二代表隊6人分別記為a,b,c,d,e,f,現(xiàn)隨機(jī)從中抽取2人上臺抽獎.求a和b至少有一人上臺抽獎的概率.
(3)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該代表中獎;若電腦顯示“謝謝”,則不中獎,求該代表中獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點A(1,0),D(﹣1,0),點B,C在單位圓O上,且∠BOC= .
(Ⅰ)若點B( , ),求cos∠AOC的值;
(Ⅱ)設(shè)∠AOB=x(0<x< ),四邊形ABCD的周長為y,將y表示成x的函數(shù),并求出y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PB上,PD//平面MAC,PA=PD=,AB=4.
(I)求證:M為PB的中點;
(II)求二面角B-PD-A的大;
(III)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2bx+c,且f(1)=f(3)=﹣1.設(shè)a>0,將函數(shù)f(x)的圖像先向右平移a個單位長度,再向下平移a2個單位長度,得到函數(shù)g(x)的圖像. (Ⅰ)若函數(shù)g(x)有兩個零點x1 , x2 , 且x1<4<x2 , 求實數(shù)a的取值范圍;
(Ⅱ)設(shè)連續(xù)函數(shù)在區(qū)間[m,n]上的值域為[λ,μ],若有 ,則稱該函數(shù)為“陡峭函數(shù)”.若函數(shù)g(x)在區(qū)間[a,2a]上為“陡峭函數(shù)”,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, , .
(1)討論函數(shù)的單調(diào)性;
(2)記,設(shè), 為函數(shù)圖象上的兩點,且.
(ⅰ)當(dāng), 時,若在處的切線相互垂直,求證: ;
(ⅱ)若在點處的切線重合,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com