【題目】若直線l的極坐標方程為,曲線C的參數方程為(為參數).
若曲線上存在M,N兩點關于直線l對稱,求實數m的值;
若直線與曲線相交于P,Q兩點,且,求實數m的取值范圍.
科目:高中數學 來源: 題型:
【題目】
已知等差數列的公差為,前項和為,且.
(1)求數列的通項公式與前項和;
(2)將數列的前四項抽取其中一項后,剩下三項按原來順序恰為等比數列的前三項,記數列的前項和為,若存在,使得對任意,總有成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法:
①將一組數據中的每個數據都加上或減去同一個常數后,方差恒不變;
②設有一個回歸方程,變量x增加一個單位時,y平均增加5個單位;
③線性回歸方程必過();
④在一個2×2列聯中,由計算得則有99%的把握確認這兩個變量間有關系;
` 其中錯誤的個數是 ( )
本題可以參考獨立性檢驗臨界值表:
0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 | |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.535 | 7.879 | 10.828 |
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“十三五”規(guī)劃確定了到2020年消除貧困的宏偉目標,打響了精準扶貧的攻堅戰(zhàn),為完成脫貧任務,某單位在甲地成立了一家醫(yī)療器械公司吸納附近貧困村民就工,已知該公司生產某種型號醫(yī)療器械的月固定成本為20萬元,每生產1千件需另投入5.4萬元,設該公司一月內生產該型號醫(yī)療器械x千件且能全部銷售完,每千件的銷售收入為萬元,已知
(1)請寫出月利潤y(萬元)關于月產量x(千件)的函數解析式;
(2)月產量為多少千件時,該公司在這一型號醫(yī)療器械的生產中所獲月利潤最大?并求出最大月利潤(精確到0.1萬元).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某社區(qū)消費者協會為了解本社區(qū)居民網購消費情況,隨機抽取了100位居民作為樣本,就最近一年來網購消費金額(單位:千元),網購次數和支付方式等進行了問卷調查.經統計這100位居民的網購消費金額均在區(qū)間內,按分成6組,其頻率分布直方圖如圖所示.
(1)估計該社區(qū)居民最近一年來網購消費金額的中位數;
(2)將網購消費金額在20千元以上者稱為“網購迷”,補全下面的列聯表,并判斷有多大把握認為“網購迷與性別有關系”
男 | 女 | 總計 | |
網購迷 | 20 | ||
非網購迷 | 45 | ||
總計 | 100 |
附:.
臨界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:如果函數的導函數為,在區(qū)間上存在,使得,,則稱為區(qū)間上的“雙中值函數“已知函數是上的“雙中值函數“,則實數m的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,,底面四邊形為直角梯形,,,為線段上一點.
(1)若,則在線段上是否存在點,使得平面?若存在,請確定點的位置;若不存在,請說明理由
(2)己知,若異面直線與成角,二而角的余弦值為,求的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com