【題目】如圖,在四棱錐中,,底面四邊形為直角梯形,,,為線(xiàn)段上一點(diǎn).
(1)若,則在線(xiàn)段上是否存在點(diǎn),使得平面?若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由
(2)己知,若異面直線(xiàn)與成角,二而角的余弦值為,求的長(zhǎng).
【答案】(1)存在,點(diǎn)是線(xiàn)段上靠近點(diǎn)的一個(gè)三等分點(diǎn);(2)2.
【解析】
(1) 延長(zhǎng),交于點(diǎn),連接。通過(guò)證明及,可得M為PB上的一個(gè)三等分點(diǎn),且靠近點(diǎn)P。
(2)建立空間直角坐標(biāo)系,寫(xiě)出各個(gè)點(diǎn)的坐標(biāo),分別求得平面和平面的法向量,再根據(jù)二面角夾角的余弦值即可得參數(shù)t的值,進(jìn)而求得CD的長(zhǎng)。
解:(1)延長(zhǎng),交于點(diǎn),連接,則平面.
若平面,由平面平面,平面,則.
由,,則,
故點(diǎn)是線(xiàn)段上靠近點(diǎn)的一個(gè)三等分點(diǎn).
(2)∵,,,平面,平面,
則平面
以點(diǎn)為坐標(biāo)原點(diǎn),以,所在的直線(xiàn)分別為軸、軸,過(guò)點(diǎn)與平面垂直的直線(xiàn)為軸,建立如圖所示的直角坐標(biāo)系,
則,,,,則,,
設(shè)平面和平面的法向量分別為,.
由,得即,
令,則,故.
同理可求得.
于是,則,解之得(負(fù)值舍去),故.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線(xiàn)l的極坐標(biāo)方程為,曲線(xiàn)C的參數(shù)方程為(為參數(shù)).
若曲線(xiàn)上存在M,N兩點(diǎn)關(guān)于直線(xiàn)l對(duì)稱(chēng),求實(shí)數(shù)m的值;
若直線(xiàn)與曲線(xiàn)相交于P,Q兩點(diǎn),且,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自2019年1月1日起,個(gè)人所得稅起征點(diǎn)和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:
個(gè)人所得稅稅率表(調(diào)整前) | 個(gè)人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) | 級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) |
1 | 不超過(guò)1500元部分 | 3 | 1 | 不超過(guò)3000元部分 | 3 |
2 | 超過(guò)1500元至4500元的部分 | 10 | 2 | 超過(guò)3000元至12000元的部分 | 10 |
3 | 超過(guò)4500元至9000元的部分 | 20 | 3 | 超過(guò)12000元至25000元的部分 | 20 |
... | ... | ... | ... | ... | ... |
(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應(yīng)納的稅,試寫(xiě)出調(diào)整前后關(guān)于的函數(shù)表達(dá)式;
(2)某稅務(wù)部門(mén)在小紅所在公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入(元) | ||||||
人數(shù) | 30 | 40 | 10 | 8 | 7 | 5 |
先從收入在及的人群中按分層抽樣抽取7人,再?gòu)闹羞x2人作為新納稅法知識(shí)宣講員,求兩個(gè)宣講員不全是同一收入人群的概率;
(3)小紅該月的工資、薪金等稅前收入為7500元時(shí),請(qǐng)你幫小紅算一下調(diào)整后小紅的實(shí)際收入比調(diào)整前增加了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為且橢圓上存在一點(diǎn),滿(mǎn)足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知分別是橢圓的左、右頂點(diǎn),過(guò)的直線(xiàn)交橢圓于兩點(diǎn),記直線(xiàn)的交點(diǎn)為,是否存在一條定直線(xiàn),使點(diǎn)恒在直線(xiàn)上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】,.
(1)若在是增函數(shù),求實(shí)數(shù)a的范圍;
(2)若在上最小值為3,求實(shí)數(shù)a的值;
(3)若在時(shí)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自2019年1月1日起,個(gè)人所得稅起征點(diǎn)和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:
個(gè)人所得稅稅率表(調(diào)整前) | 個(gè)人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) | 級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) |
1 | 不超過(guò)1500元部分 | 3 | 1 | 不超過(guò)3000元部分 | 3 |
2 | 超過(guò)1500元至4500元的部分 | 10 | 2 | 超過(guò)3000元至12000元的部分 | 10 |
3 | 超過(guò)4500元至9000元的部分 | 20 | 3 | 超過(guò)12000元至25000元的部分 | 20 |
... | ... | ... | ... | ... | ... |
(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應(yīng)納的稅,試寫(xiě)出調(diào)整前后關(guān)于的函數(shù)表達(dá)式;
(2)某稅務(wù)部門(mén)在小紅所在公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入(元) | ||||||
人數(shù) | 30 | 40 | 10 | 8 | 7 | 5 |
①先從收入在及的人群中按分層抽樣抽取7人,再?gòu)闹羞x4人作為新納稅法知識(shí)宣講員,用表示抽到作為宣講員的收入在元的人數(shù),表示抽到作為宣講員的收入在元的人數(shù),隨機(jī)變量,求的分布列與數(shù)學(xué)期望;
②小紅該月的工資、薪金等稅前收入為7500元時(shí),請(qǐng)你幫小紅算一下調(diào)整后小紅的實(shí)際收入比調(diào)整前增加了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)某相鄰兩支圖象與坐標(biāo)軸分別變于點(diǎn),則方程所有解的和為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話(huà)是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中,,.
(Ⅰ)若是偶函數(shù),求實(shí)數(shù)的值;
(Ⅱ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若對(duì)任意,都有恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com