【題目】已知函數(,)的周期為,圖象的一個對稱中心為,將函數圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得到的圖象向右平移個單位長度后得到函數的圖象.
(1)求函數與的解析式;
(2)求證:存在,使得,,能按照某種順序成等差數列.
科目:高中數學 來源: 題型:
【題目】定義符號函數,已知,.
(1)求關于的表達式,并求的最小值.
(2)當時,函數在上有唯一零點,求的取值范圍.
(3)已知存在,使得對任意的恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓方程為.
(1)設橢圓的左右焦點分別為、,點在橢圓上運動,求的值;
(2)設直線和圓相切,和橢圓交于、兩點,為原點,線段、分別和圓交于、兩點,設、的面積分別為、,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直四棱柱中,底面為菱形,且側棱 其中為的交點.
(1)求點到平面的距離;
(2)在線段上,是否存在一個點,使得直線與垂直?若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于項數為m(且)的有窮正整數數列,記,即為中的最小值,設由組成的數列稱為的“新型數列”.
(1)若數列為2019,2020,2019,2018,2017,請寫出的“新型數列”的所有項;
(2)若數列滿足,且其對應的“新型數列”項數,求的所有項的和;
(3)若數列的各項互不相等且所有項的和等于所有項的積,求符合條件的及其對應的“新型數列”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,焦距為,拋物線的焦點F是橢圓的頂點.
(1)求與的標準方程;
(2)上不同于F的兩點P,Q滿足以PQ為直徑的圓經過F,且直線PQ與相切,求的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某沿海城市的海邊有兩條相互垂直的直線型公路、,海岸邊界近似地看成一條曲線段.為開發(fā)旅游資源,需修建一條連接兩條公路的直線型觀光大道,且直線與曲線有且僅有一個公共點P(即直線與曲線相切),如圖所示.若曲線段是函數圖像的一段,點M到、的距離分別為8千米和1千米,點N到的距離為10千米,點P到的距離為2千米.以、分別為x,y軸建立如圖所示的平面直角坐標系.
(1)求曲線段的函數關系式,并指出其定義域;
(2)求直線的方程,并求出公路的長度(結果精確到1米).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com