【題目】已知正項數(shù)列的前n項和滿足

1)求數(shù)列的通項公式;

2)若nN*),求數(shù)列的前n項和;

3)是否存在實數(shù)使得恒成立,若存在,求實數(shù)的取值范圍,若不存在說明理由.

【答案】(1)(2)(3)存在,

【解析】

1)根據(jù)的關(guān)系,即可求出的通項公式;

2)由 ,可采用裂項相消法求數(shù)列的前n項和;

3)假設(shè)存在實數(shù)λ,使得對一切正整數(shù)恒成立,

對一切正整數(shù)恒成立,只需滿足即可,利用作差法得出其單調(diào)性,即可求解.

1)當n=1時,a1=2-1(舍去).

n≥2時,,

整理可得:(an+an-1)(an-an-1-1=0,可得an-an-1=1,

{an}是以a1=2為首項,d=1為公差的等差數(shù)列.∴

2)由(1)得an=n+1,∴

3)假設(shè)存在實數(shù)λ,使得對一切正整數(shù)恒成立,

對一切正整數(shù)恒成立,只需滿足即可,

,則

f1=1f2=,f3=f5)>f6)>

n=3時有最小值,所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生產(chǎn)企業(yè)對其所生產(chǎn)的甲、乙兩種產(chǎn)品進行質(zhì)量檢測,分別各抽查6件產(chǎn)品,檢測其重量的誤差,測得數(shù)據(jù)如下(單位:):

甲:13 15 13 8 14 21

乙:15 13 9 8 16 23

(1)畫出樣本數(shù)據(jù)的莖葉圖;

(2)分別計算甲、乙兩組數(shù)據(jù)的方差并分析甲、乙兩種產(chǎn)品的質(zhì)量(精確到0.1)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1,AA1ABAC2,ABAC,M是棱BC的中點點P在線段A1B

(1)若P是線段A1B的中點,求直線MP與直線AC所成角的大。

(2)若的中點,直線與平面所成角的正弦值為,求線段BP的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求解下列各題.

(1)已知,且為第一象限角,求,;

(2)已知,且為第三象限角,求,;

(3)已知,且為第四象限角,求,;

(4)已知,且為第二象限角,求,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的左右焦點,點在橢圓上,且.

(1)求橢圓的方程;

(2)過的直線分別交橢圓,且,問是否存在常數(shù),使得等差數(shù)列?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高三理科班共有60名同學(xué)參加某次考試,從中隨機挑選出5名同學(xué),他們的數(shù)學(xué)成績與物理成績如下表:

數(shù)據(jù)表明之間有較強的線性關(guān)系.

(1)求關(guān)于的線性回歸方程;

(2)該班一名同學(xué)的數(shù)學(xué)成績?yōu)?10分,利用(1)中的回歸方程,估計該同學(xué)的物理成績;

(3)本次考試中,規(guī)定數(shù)學(xué)成績達到125分為優(yōu)秀,物理成績達到100分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為,且除去抽走的5名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有5人.能否在犯錯誤概率不超過0.01的前提下認為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?

參考數(shù)據(jù):回歸直線的系數(shù),.

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知圓的方程為:,直線的方程為.

(1)求證:直線恒過定點;

(2)當直線被圓截得的弦長最短時,求直線的方程;

(3)在(2)的前提下,若為直線上的動點,且圓上存在兩個不同的點到點的距離為,求點的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直角邊OAx軸上,頂點B的坐標為,直線CDAB于點,交x軸于點.

(1)求直線CD的方程;

(2)動點Px軸上從點出發(fā),以每秒1個單位的速度向x軸正方向運動,過點P作直線l垂直于x軸,設(shè)運動時間為t.

①點P在運動過程中,是否存在某個位置,使得?若存在,請求出點P的坐標;若不存在,請說明理由;

②請?zhí)剿鳟?/span>t為何值時,在直線l上存在點M,在直線CD上存在點Q,使得以OB為一邊,OB,M,Q為頂點的四邊形為菱形,并求出此時t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知xy滿足約束條件.

1)求目標函數(shù)的最值;

2)當目標函數(shù)在該約束條件下取得最大值5時,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案