有3名男生,4名女生,在下列不同要求下,求不同的排列方法總數(shù):
(1)選其中5人排成一排;
(2)排成前后兩排,前排3人,后排4人;
(3)全體排成一排,甲不站在排頭也不站在排尾;
(4)全體排成一排,女生必須站在一起;
(5)全體排成一排,男生互不相鄰;
(6)全體排成一排,甲、乙兩人中間恰好有3人.
(1)2520(種) (2)5040(種) (3)3600(種)
(4)576(種) (5)1440(種) (6)720(種)
【解析】本題考查了有限制條件的排列問(wèn)題.
(1)從7個(gè)人中選5個(gè)人來(lái)排列,有=2520(種).
(2)分兩步完成,先選3人排在前排,有種方法,余下4人排在后排,有種方法,故共有·=5040(種).事實(shí)上,本小題即為7人排成一排的全排列,無(wú)任何限制條件.
(3)(優(yōu)先法)甲為特殊元素.先排甲,有5種方法;其余6人有種方法,故共有5×=3600(種).
(4)(捆綁法)將女生看成一個(gè)整體,與3名男生在一起進(jìn)行全排列,有種方法,再將4名女生進(jìn)行全排列,也有種方法,故共有×=576(種).
(5)(插空法)男生不相鄰,而女生不作要求,∴應(yīng)先排女生,有種方法,再在女生之間及首尾空出的5個(gè)空位中任選3個(gè)空位排男生,有種方法,故共有×=1440(種).
(6)把甲、乙及中間3人看作一個(gè)整體 ,第一步先排甲、乙兩人有種方法,再?gòu)氖O碌?人中選3人排到中間,有種方法,最后把甲、乙及中間3人看作一個(gè)整體,與剩余2人排列,有種方法,故共有××=720(種).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-7離散型隨機(jī)變量及分布列(解析版) 題型:選擇題
甲乙兩人分別獨(dú)立參加某高校自主招生面試,若甲、乙能通過(guò)面試的概率都是,則面試結(jié)束后通過(guò)的人數(shù)X的數(shù)學(xué)期望是( )
A. B. C.1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-4隨機(jī)事件的概率(解析版) 題型:解答題
某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售.如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購(gòu)進(jìn)17枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式;
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假設(shè)花店在這100天內(nèi)每天購(gòu)進(jìn)17枝玫瑰花,求這100天的日利潤(rùn)(單位:元)的平均數(shù);
②若花店一天購(gòu)進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于75元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-3二項(xiàng)式定理(解析版) 題型:填空題
(2x+)n的展開式中各項(xiàng)系數(shù)之和為729,則該展開式中x2的系數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-3二項(xiàng)式定理(解析版) 題型:選擇題
(2-)8展開式中不含x4項(xiàng)的系數(shù)的和為( )
A.-1 B.0 C.1 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-2排列與組合(解析版) 題型:填空題
某商店要求甲、乙、丙、丁、戊五種不同的商品在貨架上排成一排,其中甲、乙兩種必須排在一起,而丙、丁兩種不能排在一起,不同的排法共有________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-1分類加法與分步乘法計(jì)數(shù)原理(解析版) 題型:解答題
某區(qū)有7條南北向街道,5條東西向街道(如圖).
(1)圖中共有多少個(gè)矩形?
(2)從A點(diǎn)走向B點(diǎn)最短的走法有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):1-1集合的概念與運(yùn)算(解析版) 題型:選擇題
設(shè)集合A={1,2,a},B={x|-1<x<2a-1},A∩B=A,則實(shí)數(shù)a的取值范圍是( )
A.(1,+∞) B.(,+∞)
C.(1,) D.(,2)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)理配套特訓(xùn):10-9離散型隨機(jī)變量均值方差和正態(tài)分布(解析版) 題型:選擇題
某班50名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].從樣本成績(jī)不低于80分的學(xué)生中隨機(jī)選取2人,這2人中成績(jī)?cè)?0分以上(含90分)的人數(shù)為ξ,則ξ的數(shù)學(xué)期望為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com