【題目】已知函數(shù)).

1)函數(shù)是否過定點?若是求出該定點,若不是,說明理由.

2)將函數(shù)的圖象向下平移個單位,再向左平移個單位后得到函數(shù),設函數(shù)的反函數(shù)為,求的解析式;

3)在(2)的基礎上,若函數(shù)過點,且設函數(shù)的定義域為,若在其定義域內,不等式恒成立,求的取值范圍.

【答案】1)過定點;(2);(3.

【解析】

1)在函數(shù)的解析式中,令指數(shù)為零,可求出該函數(shù)所過定點的坐標;

2)根據(jù)平移原則求出函數(shù)的解析式,然后再根據(jù)同底數(shù)的對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)這一性質可得出函數(shù)的解析式;

3)將點代入函數(shù)的解析式得出,令,由,得出,利用函數(shù)單調性求出函數(shù)上的最大值,即可得出實數(shù)的取值范圍.

1),令,得.

因此,函數(shù)的圖象恒過定點;

2)將函數(shù)的圖象向下平移個單位,得到函數(shù))的圖象,再將所得函數(shù)的圖象向左平移個單位,可得到函數(shù))的圖象.

因此,);

3)由題意得,得,,,則,

時,.

,得,

,

,則不等式對任意的恒成立,

對任意的恒成立,構造函數(shù),其中.

則函數(shù)在區(qū)間上單調遞增,則該函數(shù)的最大值為

,因此,實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AD∥BCADAB,∠BCD45°∠BAD90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構成四面體ABCD,則在四面體ABCD中,下列結論正確的是( )

A. 平面ABD⊥平面ABC B. 平面ADC⊥平面BDC

C. 平面ABC⊥平面BDC D. 平面ADC⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中, 底面, , , , 為線段上一點, 的中點.

(1)證明: 平面;

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】太極圖是由黑白兩個魚形紋組成的圖案,太極圖展現(xiàn)了一種相互轉化,相互統(tǒng)一的和諧美.定義:能夠將圓的周長和面積同時等分成兩部分的函數(shù)稱為圓的一個“太極函數(shù)”.下列有關說法中正確的個數(shù)是( )個

①對圓的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);

②函數(shù)是圓的一個太極函數(shù);

③存在圓,使得是圓的太極函數(shù);

④直線所對應的函數(shù)一定是圓的太極函數(shù).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為梯形,AD∥BC,CD⊥BC,AD=2,AB=BC=3,PA=4,M為AD的中點,N為PC上一點,且PC=3PN.

(1)求證:MN∥平面PAB;

(2)求二面角PANM的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的奇函數(shù).

(1)當時, ,若當時, 恒成立,求的最小值;

(2)若的圖像關于對稱,且時, ,求當時, 的解析式;

(3)當時, .若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題:“,”,命題:“ ,”.若命題“”是真命題,則實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高二年級組織成語聽說大賽,每班選10名同學參賽,要求每位同學回答5個成語,各位同學的得分總和算作本班成績,其中一班的張明同學參賽,他每道題答對的概率均為,且每道題答對與否互不影響.計分辦法規(guī)定為答對不超過3個題時,每答對一個得一分,超過三個,每多答對一個得兩分.

(1)求張明至少答對三道題的概率;

(2)設張明答完5道題得分為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)給出下列四個命題:

①c = 0時,是奇函數(shù);時,方程只有一個實根;

的圖象關于點(0 , c)對稱; ④方程至多3個實根.

其中正確的命題個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案