【題目】如圖,四邊形ABCD中,AD∥BC,ADAB∠BCD45°,∠BAD90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成四面體ABCD,則在四面體ABCD中,下列結(jié)論正確的是( )

A. 平面ABD⊥平面ABC B. 平面ADC⊥平面BDC

C. 平面ABC⊥平面BDC D. 平面ADC⊥平面ABC

【答案】D

【解析】∵在四邊形ABCD中,ADBC,ADAB,∠BCD=45°,∠BAD=90°,∴BDCD.又平面ABD⊥平面BCD,且平面ABD∩平面BCDBD,∴CD⊥平面ABD,則CDAB.又ADAB,ADCDD,∴AB⊥平面ADC,又AB平面ABC,∴平面ABC⊥平面ADC,故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在空間幾何體ABCDFE中,底面是邊長為2的正方形,,.

(1)求證:AC//平面DEF;

(2)已知,若在平面上存在點(diǎn),使得平面,試確定點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—5:不等式選講

已知函數(shù)

1)當(dāng)時(shí),解不等式

2)若存在實(shí)數(shù),使得不等式成立,求實(shí)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓過點(diǎn)且與圓相切,設(shè)圓心的軌跡為曲線

(1)求曲線的方程;

(2)點(diǎn),為曲線上的兩點(diǎn)(不與點(diǎn)重合),記直線的斜率分別為,若,請(qǐng)判斷直線是否過定點(diǎn). 若過定點(diǎn),求該定點(diǎn)坐標(biāo),若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),若,則稱的“不動(dòng)點(diǎn)”;若,則稱的“穩(wěn)定點(diǎn)”.函數(shù)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為,即

)設(shè)函數(shù),求集合

)求證:

)設(shè)函數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱錐C1B1CD1后得到的幾何體如圖所示.四邊形ABCD為正方形,OACBD的交點(diǎn),EAD的中點(diǎn),A1E⊥平面ABCD.

(1)證明:A1O∥平面B1CD1

(2)設(shè)MOD的中點(diǎn),證明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,四邊形為直角梯形, ,四邊形為矩形,且, , 的中點(diǎn).

(1)求證: 平面;

(2)若,求平面與平面所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.

(1)求該拋物線的方程;

(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

1)函數(shù)是否過定點(diǎn)?若是求出該定點(diǎn),若不是,說明理由.

2)將函數(shù)的圖象向下平移個(gè)單位,再向左平移個(gè)單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,求的解析式;

3)在(2)的基礎(chǔ)上,若函數(shù)過點(diǎn),且設(shè)函數(shù)的定義域?yàn)?/span>,若在其定義域內(nèi),不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案