【題目】如圖:在四棱錐中,底面為菱形,且, 底面,

, 上點,且平面.

(1)求證: ;(2)求三棱錐的體積.

【答案】(1)見解析;(2).

【解析】試題分析:(1)根據(jù)菱形性質(zhì)得對角線相互垂直,根據(jù)底面,再根據(jù)線面垂直判定定理得即可得結(jié)果(2)記的交點為,則BD 為高,三角形POE為底,根據(jù)錐體體積公式求體積

試題解析:(1)

(2)記的交點為,連接

平面

中: , ,

中: , ,則,即,

型】解答
結(jié)束】
21

【題目】已知橢圓 的離心率,且其的短軸長等于.

(1)求橢圓的標準方程;

(2)如圖,記圓 ,過定點作相互垂直的直線,直線(斜率)與圓和橢圓分別交于、兩點,直線與圓和橢圓分別交于、兩點,若面積之比等于,求直線的方程.

【答案】(1);(2)

【解析】試題分析:(1)根據(jù)題意可列關(guān)于a,b,C的方程組,解得, ,(2)先利用坐標表示面積之比: ,聯(lián)立直線方程與圓或橢圓方程,解得交點橫坐標,代入化簡可得直線斜率,即得直線的方程.

試題解析:(1) ,

得到, ,橢圓的標準方程為:

(2)直線的方程為: ,聯(lián)立,得到,

得到,用取代得到

聯(lián)立,得到,得到

取代得到(由幾何性質(zhì)也知為直徑,橫坐標互為相反數(shù))

,得到

,直線的方程為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】甲袋中有1只黑球,3只紅球;乙袋中有2只黑球,1只紅球.

(1)從甲袋中任取兩球,求取出的兩球顏色不相同的概率;

(2)從甲,乙兩袋中各取一球,求取出的兩球顏色相同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一種設(shè)備的單價為,設(shè)備維修和消耗費用第一年為以后每年增加是常數(shù).用表示設(shè)備使用的年數(shù),記設(shè)備年平均費用為 (設(shè)備單價設(shè)備維修和消耗費用)設(shè)備使用的年數(shù).

(Ⅰ)求關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)當, ,求這種設(shè)備的最佳更新年限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x與相應的生產(chǎn)能耗y的幾組對照數(shù)據(jù)

x

3

4

5

6

y

2.5

3

4

4.5

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.(其中, ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a、b、c分別為內(nèi)角A、B、C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC
(1)求A的大小;
(2)若sinB+sinC=1,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實數(shù)a,當x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,離心率為若拋物線的焦點與橢圓的一個焦點重合.

(1)求橢圓的標準方程;

(2)過橢圓的左焦點,且斜率為的直線交橢圓于 兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長為1的正方體中,點分別是棱的中點,是側(cè)面內(nèi)一點,若平面,則線段長度的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn,點 (n∈N*)均在函數(shù)y=3x-2的圖象上.

(1)求數(shù)列{an}的通項公式;

(2)設(shè)bnTn是數(shù)列{bn}的前n項和,求使得Tn<對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

同步練習冊答案