如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,點(diǎn)E在PD上,且PE:ED=2:1.
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)求二面角B-PA-D的大。
(Ⅲ)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.
考點(diǎn):二面角的平面角及求法,直線與平面垂直的判定
專題:綜合題,空間位置關(guān)系與距離,空間角
分析:(Ⅰ)證明BD⊥PO,BD⊥AC,利用線面垂直的判定定理證明BD⊥平面PAC;
(Ⅱ)證明∠BAD為二面角B-PA-D的平面角,即可求解;
(Ⅲ)設(shè)F為PC中點(diǎn),取PE中點(diǎn)G,連接FG、BG,設(shè)AC、BD交于O,連接OE,由三角形中位線定理可得GF∥EC,OE∥BP,根據(jù)面面平行的判定定理可得平面BGF∥平面AEC,由面面平行的性質(zhì)可得BF∥平面AEC.
解答: 解:設(shè)BD∩AC=O,則
∵ABCD是菱形,PB=PD,
∴BD⊥PO,BD⊥AC,
∵AC∩PO=O,
∴BD⊥平面PAC;
(Ⅱ)∵PA=AC=a,PB=PD=
2
a,∠ABC=60°,
∴AB=BC=AC=a,∠PAB=∠PAD=90°,
∴∠BAD為二面角B-PA-D的平面角,
∴二面角B-PA-D的大小為120°;
(Ⅲ)設(shè)F為PC中點(diǎn),取PE中點(diǎn)G,連接FG、BG
設(shè)AC、BD交于O,連接OE
由PG=GE,PF=FC得GF∥EC
由DO=OB,DE=EG得OE∥BG
∴平面BGF∥平面AEC
∴BF∥平面AEC
∴F是PC中點(diǎn)時(shí),BF∥平面AEC.
點(diǎn)評(píng):本題考查直線與平面平行的判定,二面角的求法,直線與平面垂直的判定,考查空間想象能力,邏輯思維能力,計(jì)算能力,轉(zhuǎn)化思想,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是公差d<0的等差數(shù)列,Sn為其前n項(xiàng)和,若S6=5a1+10d,則Sn取最大值時(shí),n=(  )
A、5B、6C、5或6D、6或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知f(x-2)=3x-5,求f(x);
(2)若f{f[f(x)]}=27x+26,求一次函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={-3,a+1,a2},B={2a-1,a-3,a2+1},若A∩B={-3},求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M⊆{-1,0,2},且M中含有兩個(gè)元素,則符合條件的集合M有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,橢圓方程x2+3y2=12,過D(0,10)直線l交橢圓于A、B兩點(diǎn),若OAB為直角三角形,求直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x3+ax2+bx-26(a,b∈R)在x=-3和x=2處取到極值.
(1)求a,b和f(-3)-f(2)的值;
(2)求最大的正整數(shù)t,使得?x1,x2∈[-t,t]時(shí),|f(x1)-f(x2)|≤125與|f′(x1)-f′(x2)|≤125同時(shí)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某幾何體的三視圖如圖所示,其中俯視圖是邊長(zhǎng)為2的正三角形,側(cè)視圖是直角三角形,則此幾何體的體積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案