設F1、F2是雙曲線
x2
4
-
y2
b2
=1的兩個焦點,點P在雙曲線上,且∠F1PF2=90°,若△F1PF2的面積為2,則b等于
 
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:設|PF1|=m,|PF2|=n,m>n,則m-n=4,由勾股定理可得4c2=m2+n2=4(4+b2),故mn=2b2,利用△F1PF2的面積為2,建立方程,即可求出b的值.
解答: 解:設|PF1|=m,|PF2|=n,m>n,則m-n=4,
∵4c2=m2+n2=4(4+b2
∴mn=2b2,
∵△F1PF2的面積為2,
1
2
•2b2
=2
∴b=±
2
,
故答案為:±
2
點評:本題主要考查了雙曲線的簡單性質、解直角三角形.要靈活運用雙曲線的定義及焦距、實軸、虛軸等之間的關系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且滿足:a2+a4=22,S4=50.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn的最大值,并求Sn取最大值時n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將3個不同的小球放入4個盒子中,則不同放法種數(shù)有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(1,1),
b
=(-2,3),則(2
a
+
b
)•(
a
-
b
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

推理過程“大前提:
 
,小前提;四邊形ABCD是矩形,結論:四邊形ABCD的對角線相等.”應補充的大前提是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和是Sn,且Sn+
1
2
an=1.
(1)求數(shù)列{an}的通項公式;
(2)記bn=log3
an2
4
,數(shù)列{
1
bnbn+2
}的前n項和為Tn,證明:Tn
3
16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設坐標平面內有一個質點從原點出發(fā),沿x軸跳動,每次向正方向或負方向跳1個單位,經(jīng)過5次跳動質點落在點(3,0)(允許重復過此點)處,則質點不同的運動方法共有
 
種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從雙曲線
x2
9
-
y2
16
=1的左焦點F引圓x2+y2=9的切線,切點為T,延長FT交雙曲線右支于P點,若M為線段FP的中點,O為坐標原點,則|MO|-|MT|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是一個結構圖,在□處應填入( 。
A、對稱性B、解析式
C、奇偶性D、圖象交換

查看答案和解析>>

同步練習冊答案