已知函數(shù)y=
1+x
1-x
+lg(3-4x+x2)
的定義域?yàn)镸.
(1)求M;
(2)當(dāng)x∈M時(shí),求f(x)=2x+2+3•4x的最小值.
考點(diǎn):函數(shù)的最值及其幾何意義,函數(shù)的定義域及其求法
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意,
1+x
1-x
≥0
3-4x+x2>0
,即可求M;
(2)當(dāng)x∈M時(shí),換元,利用配方法求f(x)=2x+2+3•4x的最小值.
解答: 解:(1)由題意,
1+x
1-x
≥0
3-4x+x2>0
,∴-1≤x<1,
∴M={x|-1≤x<1};
(2)設(shè)t=2x,則
1
2
≤t<2,
∴f(x)=2x+2+3•4x=3t2+4t=3(t+
2
3
2-
4
3
,
∴t=
1
2
時(shí),f(x)=2x+2+3•4x的最小值為
11
4
點(diǎn)評(píng):本題考查函數(shù)的定義域及其求法,考查函數(shù)的最值及其幾何意義,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線x2=-
1
2
y的準(zhǔn)線方程是( 。
A、y=
1
8
B、y=
1
2
C、x=
1
8
D、x=
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x2-2ax+b|(x∈R).給出下列四個(gè)命題:
(1)f(x)必是偶函數(shù);
(2)當(dāng)f(0)=f(2)時(shí),f(x)的圖象必關(guān)于直線 x=1對(duì)稱;
(3)若a2-b≤0時(shí),則f(x)在區(qū)間[a,+∞)上是增函數(shù);
(4)f(x)有最大值|a2-b|;
其中所有真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
a
x
(a>0)
(1)判斷它的奇偶性;
(2)求證:f(x)在(0,
a
)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知,P為(x0,y0),C為(x,y),則
PC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將二次函數(shù)y=-x2的圖象按
a
=(h,1)平移,使得平移后的圖象與函數(shù)y=x2-x-2的圖象有兩個(gè)不同的公共點(diǎn)A和B,且向量
OA
+
OB
(O為原點(diǎn))與向量
b
=(2,-4)共線,求平移后的圖象的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=Sn-1+an-1+2n,且首項(xiàng)a1=1.求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△OAB中,記向量
OA
=
a
OB
=
b
,若M是△OAB所在平面內(nèi)的點(diǎn),且
OM
=
1
3
a
+
2
3
b
,求證:點(diǎn)M在直線AB上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>1)的焦點(diǎn)F恰為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn),且兩曲線的交點(diǎn)連線過(guò)點(diǎn)F,則雙曲線的離心率為(  )
A、
2
B、
2
+1
C、2
D、2+
2

查看答案和解析>>

同步練習(xí)冊(cè)答案