由數(shù)字1,2,3組成的n位數(shù),1,2,3每個至少出現(xiàn)一次,這樣的n位數(shù)共有多少個?
考點:計數(shù)原理的應用
專題:排列組合
分析:根據(jù)題意,選用排除法,首先計算不考慮重復與否的全部情況數(shù)目,進而計算其中不符合條件的只有1個數(shù)字的和只含有2個數(shù)字的情況數(shù)目,進而由全部情況數(shù)目減去不和條件的情況數(shù)目,可得答案..
解答: 解:使用排除法,
首先計算全部的情況數(shù)目,共3n種,
只含有2個數(shù)字的有:C32×2n=3×2n種,
只含有1個數(shù)字的有:C31×1n=3種,
故1、2、3都至少出現(xiàn)一次,即含有3個數(shù)字的有3n-3×2n-3種;
點評:本題考查排列組合的運用,注意理清各種情況之間的相互關系,選用排除法或倍分法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(-x)+f(x)=x2,當x<0時,f′(x)<x,則不等式f(x)+
1
2
≥f(1-x)+x的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx+
2a2
x
+x(a>0).若曲線y=f(x)在點(1,f(1))處的切線與直線x-2y=0垂直,
(Ⅰ)求實數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
x
-log2
1+x
1-x

(1)求函數(shù)f(x)的定義域;
(2)判斷f(x)的奇偶性并證明;
(3)討論f(x)在區(qū)間(0,1)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a2=-1,2a1+a3=-1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設{an}的前n項和為Sn,若Sk=-99,求k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-(2a-1)lnx+b
(1)若f(x)在x=1處的切線方程為y=x,求實數(shù)a,b的值;
(2)當a>
1
2
時,研究f(x)的單調(diào)性;
(3)當a=1時,f(x)在區(qū)間(
1
e
,e)上恰有一個零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
6x+b
x2+4
的最大值為
9
4
,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an},a1=1,an=an+12+2an+1
(Ⅰ)求證:數(shù)列{log2(an+1)}為等比數(shù)列:
(Ⅱ)設bn=n1og2(an+1),數(shù)列{bn}的前n項和為Sn,求證:1≤Sn<4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

極坐標系中,A,B分別是直線3ρcosθ-4ρsinθ+5=0和圓ρ=2cosθ上的動點,則A,B兩點之間距離的最小值是
 

查看答案和解析>>

同步練習冊答案