參數(shù)方程
x=t+
1
t
y=-2
(t為參數(shù))所表示的曲線是( 。
A、一條射線B、兩條射線
C、一條直線D、兩條直線
考點(diǎn):參數(shù)方程化成普通方程
專題:選作題,坐標(biāo)系和參數(shù)方程
分析:確定x的范圍,即可得出結(jié)論.
解答: 解:t>0時(shí),x=t+
1
t
≥2,t<0時(shí),x=t+
1
t
≤-2,
∴參數(shù)方程
x=t+
1
t
y=-2
(t為參數(shù))可化為y=-2(x≤-2或x≥2),
∴表示兩條射線.
故選:B.
點(diǎn)評(píng):本題考查參數(shù)方程和直角坐標(biāo)的互化,確定x的范圍是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
log2|x-1|   (x≠1)
2        (x=1)
,若關(guān)于x的方程f2(x)+bf(x)+c=0(b,c∈R)恰有5個(gè)不同的實(shí)數(shù)解xi(i=1,2,3,4,5),則f(
5
i=1
xi)的值為( 。
A、8B、5C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,其中假命題是( 。
A、對(duì)分類變量X與Y的隨機(jī)變量K2的觀測(cè)值k來(lái)說(shuō),k越小,“X與Y有關(guān)系”可信程度越大.
B、用相關(guān)指數(shù)R2來(lái)刻畫回歸的效果時(shí),R2的值越大,說(shuō)明模型擬合的效果越好.
C、兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近1.
D、樣本數(shù)據(jù)的標(biāo)準(zhǔn)差越大,則數(shù)據(jù)的離散程度越大;標(biāo)準(zhǔn)差越小,則數(shù)據(jù)的離散程度越。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從2011名學(xué)生中選出50名學(xué)生組成參觀團(tuán),若采用下面的方法選。含F(xiàn)用簡(jiǎn)單隨機(jī)抽樣從2011人中剔除11人,剩下的2000人再按系統(tǒng)抽樣的方法抽取50人,則在2011人中,每人入選的概率( 。
A、都相等,且為
1
40
B、不全相等
C、均不相等
D、都相等,且為
50
2011

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={y|y=x2-1},B={x|y=
1-x2
},則A與B的關(guān)系是( 。
A、A?BB、A⊆B
C、A=BD、A∩B是空集

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-x2+1是( 。
A、奇函數(shù),且在(0,1)上是增加的
B、奇函數(shù),且在(0,1)上是減少的
C、偶函數(shù),且在(0,1)上是增加的
D、偶函數(shù),且在(0,1)上是減少的

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩人下棋,兩人下成和棋的概率是
1
2
,乙獲勝的概率是
1
3
,則甲獲勝的概率是( 。
A、
1
6
B、
1
2
C、
2
3
D、
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若asinθ+cosθ=1,bsinθ-cosθ=1,則ab的值是( 。
A、0
B、1
C、-1
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)擲兩顆骰子,基本事件的個(gè)數(shù)是多少?其點(diǎn)數(shù)之和為4的概率是多少?
(2)甲、乙兩人約定上午9點(diǎn)至12點(diǎn)在某地點(diǎn)見面,并約定任何一個(gè)人先到之后等另一個(gè)人不超過(guò)一個(gè)小時(shí),一小時(shí)之內(nèi)如對(duì)方不來(lái),則離去.如果他們二人在9點(diǎn)到12點(diǎn)之間的任何時(shí)刻到達(dá)約定地點(diǎn)的概率都是相等的,求他們見到面的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案