若f(x)是R上周期為5奇函數(shù),且滿足f(1)=1,f(2)=2,則f(3)-f(4)=( 。
A、-1B、1C、-2D、2
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)奇偶性以及周期性,將3或4的函數(shù)值問題轉(zhuǎn)化為1或2的函數(shù)值問題求解即可.
解答: 解:∵若f(x)是R上周期為5的奇函數(shù)
∴f(-x)=-f(x),f(x+5)=f(x),
∴f(3)=f(-2)=-f(2)=-2,
f(4)=f(-1)=-f(1)=-1,
∴f(3)-f(4)=-2-(-1)=-1.
故選:A.
點(diǎn)評(píng):本題考查函數(shù)奇偶性與周期性的應(yīng)用,即將自變量利用奇偶性、周期性進(jìn)行轉(zhuǎn)化,考查轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正方體的內(nèi)切球,與各棱相切的球,外接球的體積之比為(  )
A、1:2:3
B、1:
1
2
3
2
C、1:2
2
:3
3
D、1:
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
.
a
c
b
d
.
=ad-bc,則
.
46
810
.
+
.
1214
1618
.
+…+
.
20122014
20162018
.
=(  )
A、-2010
B、-2012
C、-2014
D、-2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(m,n),
b
=(1,2),
c
=(k,t),且
a
b
b
c
,|
a
+
c
|=
10
,則mt的取值范圍是(  )
A、(-1,1)
B、[-1,1]
C、(0,1]
D、(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos(-
16π
3
)的值為( 。
A、-
3
2
B、
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=2(bn-1)(b∈R且b≠0),那么{an}( 。
A、一定是等比數(shù)列
B、一定是等差數(shù)列
C、既不可能是等差數(shù)列,也不可能是等比數(shù)列
D、或者是等差數(shù)列,或者是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-4x2+4x+10,則方程f(x)=0在區(qū)間[2,10]的根( 。
A、有3個(gè)B、有2個(gè)
C、有且只有1個(gè)D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z滿足(z-i)(1-i)=1+i,則z的共軛復(fù)數(shù)是( 。
A、iB、-iC、2iD、-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正三棱柱ABC-A1B1C1中,AA1=2AC=4,延長(zhǎng)CB至D,使CB=BD.
(1)求證:直線C1B∥平面AB1D;
(2)求平面AB1D與平面ACB所成銳角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案