已知p:x2-2x-3<0;q:m<x<m+6,
(1)求不等式x2-2x-3<0的解集;
(2)若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.
考點(diǎn):必要條件、充分條件與充要條件的判斷,一元二次不等式的解法
專題:不等式的解法及應(yīng)用,簡(jiǎn)易邏輯
分析:(1)x2-2x-3<0化為(x+1)(x-3)<0,解得-1<x<3,即可得出;
(2)由于p是q的充分不必要條件,可得
m≤-1
m+6≥3
,解得即可.
解答: 解:(1)x2-2x-3<0化為(x+1)(x-3)<0,解得-1<x<3,
∴不等式x2-2x-3<0的解集為{x|-1<x<3};
(2)∵p是q的充分不必要條件,
m≤-1
m+6≥3
,解得-3≤m≤-1,
∴實(shí)數(shù)m的取值范圍是[-3,-1].
點(diǎn)評(píng):本題考查了一元二次不等式的解法、充分必要條件的應(yīng)用,考查了推理能力和計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我市某校某數(shù)學(xué)老師這學(xué)期分別用m,n兩種不同的教學(xué)方式試驗(yàn)高一甲、乙兩個(gè)班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同,勤奮程度和自覺(jué)性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各20名的數(shù)學(xué)期末考試成績(jī),分別為:
甲班:82,73,69,59,67,72,86,58,68,71,67,59,86,66,78,92,58,83,72,81.
乙班:89,69,95,80,73,86,69,90,81,78,98,86,65,82,76,96,88,67,91,85.
(Ⅰ)作出甲乙兩班分別抽取的20名學(xué)生數(shù)學(xué)期末成績(jī)的莖葉圖,依莖葉圖判斷哪個(gè)班的平均分高?
(Ⅱ)現(xiàn)從甲班所抽數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?6分的同學(xué)至少有一個(gè)被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在[a,b]上的函數(shù),若存在c∈(a,b),使得f(x)在[a,c]上單調(diào)遞增,在[c,b]上單調(diào)遞減,則稱f(x)為[a,b]上單峰函數(shù),c為峰點(diǎn).
(1)已知f(x)=
1
4
(x2-2x)(x2-2x+2t2)為[a,b]上的單峰函數(shù),求t的取值范圍及b-a的最大值;
(2)設(shè)fn(x)=2014+px-(x+
x2
2
+
x3
3
+…+
xn+1
n+1
+
p3xn+4
n+4
),其中n∈N*,p>2.
①證明:對(duì)任意n∈N*,fn(x)為[0,1-
1
p
]上的單峰函數(shù);
②記函數(shù)fn(x)在[0,1-
1
p
]上的峰點(diǎn)為cn,n∈N*,證明:cn<cn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱柱ABC-A1B1C1中,平面A1AC⊥平面ABC,BC⊥AC,D為AC的中點(diǎn),AC=BC=AA1=A1C=2.
(Ⅰ)求證:AC1⊥平面A1BC;
(Ⅱ)求平面AA1B與平面A1BC的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,5),
b
=(-3,2),
(1)求|
a
-
b
|的值;
(2)當(dāng)k為何值時(shí),k
a
+
b
a
-3
b
平行?平行時(shí)它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x、y滿足約束條件
x≤2
y≤2
x+y≥2
,
(1)求目標(biāo)函數(shù)z=x+2y的最大值;
(2)求目標(biāo)函數(shù)z=x-2y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=
x+3
x
 
(1)寫(xiě)出此函數(shù)的定義域和值域
(2)證明函數(shù)在(0,+∞)為單調(diào)遞減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x2=2y+5,y2=2x+5(x≠y),則x3-2x2y2+y3的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在(-1,1)上的函數(shù)f(x)在整個(gè)定義域上是減函數(shù),若f(1-2a)<f(3a-1),則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案