已知一圓的方程為x2+y2-6x-8y=0,設(shè)該圓過點(3,5)的最長弦和最短弦分別為AC和BD,求四邊形ABCD的面積.
考點:直線與圓的位置關(guān)系
專題:直線與圓
分析:由圓方程得:(x-3)2+(y-4)2=52,圓心O(3,4),半徑r=5,AC長為過點(3,5)和點O的圓的直徑d=2×5=10,BD應與AC垂直,即與x軸平行,方程為:y=5,由此求出BD=3+2
6
-(3-2
6
)=4
6
,從而能求出四邊形ABCD的面積.
解答: 解:由圓方程得:(x-3)2+(y-4)2=52,①
則圓心O(3,4),半徑r=5,
AC長為過點(3,5)和點O的圓的直徑d=2×5=10,
k=
4-5
3-3
不存在,∴AC為垂直x軸的直線,
∴BD應與AC垂直,即與x軸平行,方程為:y=5 ②
②代入①得:x2-6x-15=0,解是x=3±2
6
,
∴BD=3+2
6
-(3-2
6
)=4
6

則四邊形ABCD面積=AC•BD=5×4
6
=20
6
,
∴四邊形ABCD的面積:S四邊形ABCD=20
6
點評:本題考查四邊形的面積的求法,是中檔題,解題時要認真審題,注意圓的性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,A=60°,b=6,c=10,則△ABC的面積為( 。
A、15
6
B、15
3
C、15
D、30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知公差不為0的等差數(shù)列{an}的前n項和為Sn,S4=16,a22=a1a5
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>1,b>1,求證:a+b<ab+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校從高二年級學生中隨機抽取60名學生,將其會考的政治成績(均為整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示頻率分布直方圖.
(Ⅰ)求圖中a的值;
(Ⅱ)根據(jù)頻率分布直方圖,估計該校高二年級學生政治成績的平均分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

指出下面集合之間的關(guān)系:
M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知過曲線C1:x2=-4y上點(2,-1)的切線為l,圓C2圓心為曲線C1的焦點,圓C2在直線l上截得的弦長為2
7

(1)求圓C2的方程;
(2)設(shè)圓C2與x軸、y軸正半軸分別交于點A,B,點C在曲線C1上,求△ABC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是一次函數(shù),且滿足3f(x+1)-f(x)=2x+9,求f(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對某校高三年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖:
分組頻數(shù)頻率
[10,15)mP
[15,20)24n
[20,25)40.1
[25,30)20.05
合計M1
(Ⅰ)求出表中M,p及圖中a的值;
(Ⅱ)若該校高三學生有240人,試估計該校高三學生參加社區(qū)服務的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(Ⅲ)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至多一人參加社區(qū)服務次數(shù)在區(qū)間[25,30)內(nèi)的概率.

查看答案和解析>>

同步練習冊答案