求半徑為4,與圓x2+y2-4x-2y-4=0相切,且和直線y=0相切的圓的方程.

(x-2-2)2+(y+4)2=42或(x-2+2)2+(y+4)2=42

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

將一顆質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1、2、3、4、5、6)先后拋兩次,將得到的點(diǎn)數(shù)分別記為a,b.
(1)求滿足條件a+b≥9的概率;
(2)求直線ax+by+5=0與x2+y2=1相切的概率
(3)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn),直線.設(shè)圓的半徑為,圓心在上.
(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線的方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C:
(1)當(dāng)為何值時(shí),曲線C表示圓;
(2)在(1)的條件下,若曲線C與直線交于M、N兩點(diǎn),且,求的值.
(3)在(1)的條件下,設(shè)直線與圓交于兩點(diǎn),是否存在實(shí)數(shù),使得以為直徑的圓過原點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形為邊長為a的正方形,以D為圓心,DA為半徑的圓弧與以BC為直徑的圓O交于F,連接CF并延長交AB于點(diǎn)E.
 
(1).求證:E為AB的中點(diǎn);
(2).求線段FB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓滿足:
①截y軸所得弦長為2;
②被x軸分成兩段圓弧,其弧長的比為.
求在滿足條件①②的所有圓中,使代數(shù)式取得最小值時(shí),圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).
(1)求證:不論m取什么值,圓心在同一直線l上;
(2)與l平行的直線中,哪些與圓相交,相切,相離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知直線lyx,圓C1的圓心為(3,0),且經(jīng)過點(diǎn)A(4,1).
 
(1)求圓C1的方程;
(2)若圓C2與圓C1關(guān)于直線l對(duì)稱,點(diǎn)B、D分別為圓C1、C2上任意一點(diǎn),求|BD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)求圓心在軸上,且與直線相切于點(diǎn)的圓的方程;
(2)已知圓過點(diǎn),且與圓關(guān)于直線對(duì)稱,求圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案