已知曲線C:
(1)當(dāng)為何值時,曲線C表示圓;
(2)在(1)的條件下,若曲線C與直線交于M、N兩點(diǎn),且,求的值.
(3)在(1)的條件下,設(shè)直線與圓交于,兩點(diǎn),是否存在實(shí)數(shù),使得以為直徑的圓過原點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.

(1) (2)(3)存在,

解析試題分析:
(1)根據(jù)圓的一般式可知, ,可得范圍;
(2)將(1)中圓變形為標(biāo)準(zhǔn)方程,可知存在于半徑中,所以根據(jù)圓中 ,先求出圓心到直線的距離,即可求半徑得.
(3)假設(shè)存在,則有,設(shè)出兩點(diǎn)坐標(biāo),可得.根據(jù)直線與圓的位置關(guān)系是相交,所以聯(lián)立后首先根據(jù)初步判斷的范圍,而后利用根與系數(shù)的關(guān)系用表示出,將其帶入解之,如有解且在的范圍內(nèi),則存在,否則不存在.
(1)由,得.
(2),即,
所以圓心,半徑,
圓心到直線的距離.
,在圓中
,即
(3)假設(shè)存在實(shí)數(shù)使得以為直徑的圓過原點(diǎn),則,所以.
設(shè),則有,即.
,
,即,又由(1)知,

根據(jù)根與系數(shù)的關(guān)系知:
,
                                               
故存在實(shí)數(shù)使得以為直徑的圓過原點(diǎn),
考點(diǎn):圓的一般方程的判斷,直線與圓的位置關(guān)系的應(yīng)用, 的使用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知實(shí)數(shù)
(1)求直線y=ax+b不經(jīng)過第四象限的概率:
(2)求直線y=ax+b與圓有公共點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:圓C過點(diǎn)A(6,0),B(1,5)且圓心在直線上,求圓C的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線;設(shè)為曲線上的一個不在軸上的動點(diǎn),為坐標(biāo)原點(diǎn),過點(diǎn)的平行線交曲線兩個不同的點(diǎn).
(1)求曲線的方程;
(2)試探究的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(3)記的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求過直線與已知圓的交點(diǎn),且在兩坐標(biāo)軸上的四個截距之和為8的圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求半徑為4,與圓x2+y2-4x-2y-4=0相切,且和直線y=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C過點(diǎn)P(1,1),且與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對稱.
(1)求圓C的方程;
(2)過點(diǎn)P作兩條相異直線分別與圓C相交于A、B,且直線PA和直線PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),試判斷直線OP和AB是否平行?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知以點(diǎn)C為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為坐標(biāo)原點(diǎn).
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=-2x+4與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知AC、BD為圓的兩條相互垂直的弦,垂足為,則四邊形ABCD的面積的最大值為         .

查看答案和解析>>

同步練習(xí)冊答案