已知拋物線C:y2=4x,過(guò)點(diǎn)A(x0,0)(其中x0為常數(shù),且x0>0)作直線l交拋物線于P,Q(點(diǎn)P在第一象限);
(1)設(shè)點(diǎn)Q關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為D,直線DP交x軸于點(diǎn)B,求證:B為定點(diǎn);
(2)若x0=1,M1,M2,M3為拋物線C上的三點(diǎn),且△M1M2M3的重心為A,求線段M2M3所在直線的斜率的取值范圍.
(1)證明:設(shè)P(x1,y1),Q(x2,y2),則D(x2,-y2),直線PD的方程為y-y1=
y1+y2
x1-x2
(x-x1)
,
令y=0,x=
x2y1+x1y2
y1+y2
=
y22
4
•y1+
y12
4
y2
y1+y2
=
y1y2
4
,
設(shè)l:y=k(x-x0),代入拋物線方程,得到ky2-4y-4kx0=0,∴y1y2=-4x0
∴x=x0,即B(x0,0)為定點(diǎn);
(2)A(1,0),設(shè)lM1M2:y=kx+m,M1(x1′,y1′),M2(x2′,y2′),M3(x3′,y3′),M2M3中點(diǎn)E(xE′,yE′),
lM1M2:y=kx+m代入拋物線方程,可得k2x2+(2km-4)x+m2=0,
∴x1′+x2′=
4-2km
k2
,
∴y1′+y2′=
4
k
,
∴E(
2-km
k2
2
k
),
∵2
EF
=
FM1
,∴M1(3-
4-2km
k2
,-
4
k
),
∵M(jìn)1在拋物線y2=4x上,
16
k2
=4(3-
4-2km
k2
)

∴3k2+2km=8,
又△>0得16-16km>0,∴km<1,
∴2km=8-3k2<2,
∴k2>2,
k>
2
k<-
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)設(shè)直線. 若直線l與曲線S同時(shí)滿(mǎn)足下列兩個(gè)條件:①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);②對(duì)任意xR都有. 則稱(chēng)直線l為曲線S的“上夾線”.(Ⅰ)已知函數(shù).求證:為曲線的“上夾線”.
(Ⅱ)觀察下圖:
          
根據(jù)上圖,試推測(cè)曲線的“上夾線”的方程,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)P到兩點(diǎn)(-
3
,0),(
3
,0)的距離之和等于4,設(shè)點(diǎn)P的軌跡為曲線C,直線l過(guò)點(diǎn)E(-1,0)且與曲線C交于A,B兩點(diǎn).
(1)求曲線C的軌跡方程;
(2)若AB中點(diǎn)橫坐標(biāo)為-
1
2
,求直線AB的方程;
(3)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓Q:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)F(c,0),過(guò)點(diǎn)F的一動(dòng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng),并且交橢圓于A、B兩點(diǎn),P是線段AB的中點(diǎn).
(1)求點(diǎn)P的軌跡H的方程.
(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q≤
π
2
),確定q的值,使原點(diǎn)距橢圓的右準(zhǔn)線l最遠(yuǎn),此時(shí),設(shè)l與x軸交點(diǎn)為D,當(dāng)直線m繞點(diǎn)F轉(zhuǎn)動(dòng)到什么位置時(shí),三角形ABD的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線C:x2-y2=1,l:y=kx+1
(1)求直線L的斜率的取值范圍,使L與C分別有一個(gè)交點(diǎn),兩個(gè)交點(diǎn),沒(méi)有交點(diǎn).
(2)若Q(1,1),試判斷以Q為中點(diǎn)的弦是否存在,若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,A(-1,0),B(1,0),過(guò)曲線C1:y=x2-1(|x|≥1)上一點(diǎn)M的切線l,與曲線C2:y=-
m(1-x2)
(|x|<1)
也相切于點(diǎn)N,記點(diǎn)M的橫坐標(biāo)為t(t>1).
(1)用t表示m的值和點(diǎn)N的坐標(biāo);
(2)當(dāng)實(shí)數(shù)m取何值時(shí),∠MAB=∠NAB?并求此時(shí)MN所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:x2+
y2
m
=1
的焦點(diǎn)在y軸上,且離心率為
3
2
.過(guò)點(diǎn)M(0,3)的直線l與橢圓C相交于兩點(diǎn)A、B.
(1)求橢圓C的方程;
(2)設(shè)P為橢圓上一點(diǎn),且滿(mǎn)足
OA
+
OB
OP
(O為坐標(biāo)原點(diǎn)),當(dāng)|
PA
|-|
PB
|<
3
時(shí),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過(guò)點(diǎn)(2,0),且離心率為
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)N(
2
,0)且斜率為
6
3
的直線l與橢圓C交于A,B兩點(diǎn),求證:
OA
OB
=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0)、B(1,0),動(dòng)點(diǎn)C滿(mǎn)足條件:△ABC的周長(zhǎng)為2+2
2
.記動(dòng)點(diǎn)C的軌跡為曲線W.
(Ⅰ)求W的方程;
(Ⅱ)經(jīng)過(guò)點(diǎn)(0,
2
)且斜率為k的直線l與曲線W有兩個(gè)不同的交點(diǎn)P和Q,求k的取值范圍;
(Ⅲ)已知點(diǎn)M(
2
,0
),N(0,1),在(Ⅱ)的條件下,是否存在常數(shù)k,使得向量
OP
+
OQ
MN
共線?如果存在,求出k的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案