(本題滿分14分)設(shè)直線. 若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);②對(duì)任意xR都有. 則稱直線l為曲線S的“上夾線”.(Ⅰ)已知函數(shù).求證:為曲線的“上夾線”.
(Ⅱ)觀察下圖:
          
根據(jù)上圖,試推測(cè)曲線的“上夾線”的方程,并給出證明.
(Ⅰ)由, -------1分
分當(dāng)時(shí),,此時(shí),, -------2分
,所以是直線與曲線的一個(gè)切點(diǎn);-------3分
當(dāng)時(shí),,此時(shí),------4分
,所以是直線與曲線的一個(gè)切點(diǎn);  -----5分
所以直線l與曲線S相切且至少有兩個(gè)切點(diǎn);
對(duì)任意xR,所以  --------6分
因此直線是曲線的“上夾線”.        ----------7分
(Ⅱ)推測(cè):的“上夾線”的方程為       ------9分
①先檢驗(yàn)直線與曲線相切,且至少有兩個(gè)切點(diǎn):
設(shè): ,
,得:kZ)-----10分
當(dāng)時(shí),
故:過(guò)曲線上的點(diǎn)(,)的切線方程為:
y[]= [-()],化簡(jiǎn)得:
即直線與曲線相切且有無(wú)數(shù)個(gè)切點(diǎn).----12分
不妨設(shè),②下面檢驗(yàn)g(x)F(x)g(x)F(x)=
直線是曲線的“上夾線”.--------14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)向量為直角坐標(biāo)平面內(nèi)x軸,y軸正方向上的單位向量.若向量,,且.(1)求滿足上述條件的點(diǎn)的軌跡方程;(2)設(shè),問(wèn)是否存在常數(shù),使得恒成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線l的方程為,且直線lx軸交于點(diǎn)M,圓x軸交于兩點(diǎn)(如圖).
(I)過(guò)M點(diǎn)的直線交圓于兩點(diǎn),且圓孤恰為圓周的,求直線的方程;
(II)求以l為準(zhǔn)線,中心在原點(diǎn),且與圓O恰有兩個(gè)公共點(diǎn)的橢圓方程;

(III)過(guò)M點(diǎn)的圓的切線交(II)中的一個(gè)橢圓于兩點(diǎn),其中兩點(diǎn)在x軸上方,求線段CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分15分)
已知曲線C上的動(dòng)點(diǎn)滿足到點(diǎn)的距離比到直線的距離小1.
求曲線C的方程;過(guò)點(diǎn)F的直線l與曲線C交于A、B兩點(diǎn).(。┻^(guò)A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M,證明;(ⅱ)是否在y軸上存在定點(diǎn)Q,使得無(wú)論AB怎樣運(yùn)動(dòng),都有?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知直線l與橢圓(ab>0)相交于不同兩點(diǎn)A、B,,且,以M為焦點(diǎn),以橢圓的右準(zhǔn)線為相應(yīng)準(zhǔn)線的雙曲線與直線l相交于N(4,1). (I)求橢圓的離心率; (II)設(shè)雙曲線的離心率為,記,求的解析式,并求其定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在面積為18的△ABC中,AB=5,雙曲線E過(guò)點(diǎn)A,


 
且以B、C為焦點(diǎn),已知

(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求雙曲線E的方程;
(Ⅱ)是否存在過(guò)點(diǎn)D(1,1)的直線l,
使l與雙曲線E交于不同的兩點(diǎn)M、N,且
如果存在,求出直線l的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為
(I)求的值;
(II)設(shè)拋物線上一點(diǎn)的橫坐標(biāo)為,過(guò)的直線交于另一點(diǎn),交軸于點(diǎn),過(guò)點(diǎn)的垂線交于另一點(diǎn).若的切線,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C:y2=4x,過(guò)點(diǎn)A(x0,0)(其中x0為常數(shù),且x0>0)作直線l交拋物線于P,Q(點(diǎn)P在第一象限);
(1)設(shè)點(diǎn)Q關(guān)于x軸的對(duì)稱點(diǎn)為D,直線DP交x軸于點(diǎn)B,求證:B為定點(diǎn);
(2)若x0=1,M1,M2,M3為拋物線C上的三點(diǎn),且△M1M2M3的重心為A,求線段M2M3所在直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線過(guò)點(diǎn)(-1,2)且與直線垂直,則的方程是 (   )
a.                     b.
c.                     d.

查看答案和解析>>

同步練習(xí)冊(cè)答案