【題目】以下幾個命題中:

①線性回歸直線方程恒過樣本中心;

②用相關指數(shù)可以刻畫回歸的效果,值越小說明模型的擬合效果越好;

③隨機誤差是引起預報值和真實值之間存在誤差的原因之一,其大小取決于隨機誤差的方差;

④在含有一個解釋變量的線性模型中,相關指數(shù)等于相關系數(shù)的平方.

其中真命題為 _________

【答案】①③④

【解析】

由線性回歸直線恒過樣本中心可判斷①,由相關指數(shù)的值的大小與擬合效果的關系可判斷②,由隨機誤差和方差的關系可判斷③,由相關指數(shù)和相關系數(shù)的關系可判斷④.

①線性回歸直線方程恒過樣本中心,所以正確.

②用相關指數(shù)可以刻畫回歸的效果,值越大說明模型的擬合效果越好,所以錯誤.

③隨機誤差是引起預報值和真實值之間存在誤差的原因之一,其大小取決于隨機誤差的方差;所以正確.

④在含有一個解釋變量的線性模型中,相關指數(shù)等于相關系數(shù)的平方,所以正確.

故答案為:①③④.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為大力提倡厲行節(jié)約,反對浪費,某市通過隨機調(diào)查100名性別不同的居民是否做到光盤行動,得到如下列聯(lián)表:

做不到光盤行動

做到光盤行動

45

10

30

15

經(jīng)計算 附表:

參照附表,得到的正確結論是(

A.在犯錯誤的概率不超過的前提下,認為該市居民能否做到光盤行動與性別有關

B.在犯錯誤的概率不超過的前提下,認為該市居民能否做到光盤行動與性別無關

C.以上的把握認為該市居民能否做到光盤行動與性別有關

D.以上的把握認為該市居民能否做到光盤行動與性別無關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在正方體中,點是棱上的一個動點,平面交棱于點給出下列命題:

①存在點,使得//平面;

對于任意的點平面平面;

存在點,使得平面

④對于任意的點,四棱錐的體積均不變.

其中正確命題的序號是______.(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的離心率為,橢圓上一點到左右兩個焦點、的距離之和是4.

1)求橢圓的方程;

2)已知過的直線與橢圓交于、兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了2015121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如表:

日期

121

122

123

124

125

溫差x(℃)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

1)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關于x的線性回歸方程bx+a;

2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得到的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,、所對的邊長為,,.

1)若,求;

2)討論使有一解、兩解、無解時的取值情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年寒假是特殊的寒假,因為抗擊疫情全體學生只能在家進行網(wǎng)上在線學習,為了研究學生在網(wǎng)上學習的情況,某學校在網(wǎng)上隨機抽取120名學生對線上教育進行調(diào)查,其中男生與女生的人數(shù)之比為1113,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.

1)完成列聯(lián)表,并回答能否有99%的把握認為對線上教育是否滿意與性別有關;

滿意

不滿意

總計

男生

30

女生

15

合計

120

2)從被調(diào)查的對線上教育滿意的學生中,利用分層抽樣抽取8名學生,再在8名學生中抽取3名學生,作線上學習的經(jīng)驗介紹,其中抽取男生的個數(shù)為,求出的分布列及期望值.

參考公式:附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

0.706

3.841

5.024

6.635

7.879

10828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)經(jīng)過兩點.

(1)求橢圓的方程;

(2)過原點的直線與橢圓交于兩點,橢圓上一點滿足,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)若,求曲線在點處的切線方程;

(2)對任意的,恒有,求正數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案