函數(shù)f(x)=x3-3x的單調(diào)遞減區(qū)間是( 。
A、(∞,-1)
B、(1,+∞)
C、(-∞,-1)∪(1,+∞)
D、(-1,1)
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:計算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:由題意求導(dǎo)并令導(dǎo)數(shù)<0,從而求解.
解答: 解:∵f(x)=x3-3x,
∴f′(x)=3x2-3=3(x+1)(x-1),
令f′(x)<0解得,
-1<x<1,
故函數(shù)f(x)=x3-3x的單調(diào)遞減區(qū)間是(-1,1);
故選D.
點(diǎn)評:本題考查了導(dǎo)數(shù)在求單調(diào)性時的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的通項公式an=2-n,則數(shù)列{
an
2n-1
}的前n項和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,BA=BD=
2
,PA=PD=
5
,AD=2,BD=
3
.E、F分別是棱AD,PC的中點(diǎn).
(1)證明:EF∥平面PAB;
(2)求二面角P-AD-B的大;
(3)證明BE⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的橢圓Ω,它的離心率為
1
2
,一個焦點(diǎn)和拋物線y2=-4x的焦點(diǎn)重合,過直線l:x=4上一點(diǎn)M引橢圓Ω的兩條切線,切點(diǎn)分別是A,B.
(Ⅰ)求橢圓Ω的方程;
(Ⅱ)若在橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的點(diǎn)(x0,y0)處的橢圓的切線方程是
x0x
a2
+
y0y
b2
=1.求證:直線AB恒過定點(diǎn)C;并出求定點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示是一個幾何體的直觀圖、正視圖、俯視圖和側(cè)視圖(尺寸如圖所示);
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)求證平面PBC⊥平面PABE;
(Ⅲ)若G為BC上的動點(diǎn),求證:AE⊥PG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三次函數(shù)f(x)=x3+ax2+bx+c在x=1和x=-1時取極值,且f(-2)=-4.
(1)求函數(shù)y=f(x)的表達(dá)式;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

連續(xù)拋擲一枚硬幣3次,則至少有一次正面向上的概率是(  )
A、
1
8
B、
7
8
C、
1
7
D、
5
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l、m、n與平面α、β,給出下列四個命題:
①若m∥l,n∥l,則m∥n;   
②若m⊥α,m∥β,則α⊥β;
③若m∥α,n∥α,則m∥n;    
④若m⊥β,α⊥β,則m∥α;
其中假命題是( 。
A、①B、②C、③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項的和為Sn,且a10=8,S3=0.
(1)求{an}的通項公式;
(2)令bn=(
1
2
)an
,求{bn}的前n項和Tn;
(3)若不等式
k
4-Tn
≥2an-3
對于n∈N*恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案