已知直線l、m、n與平面α、β,給出下列四個(gè)命題:
①若m∥l,n∥l,則m∥n;   
②若m⊥α,m∥β,則α⊥β;
③若m∥α,n∥α,則m∥n;    
④若m⊥β,α⊥β,則m∥α;
其中假命題是( 。
A、①B、②C、③D、③④
考點(diǎn):平面與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:根據(jù)空間直線和平面平行或垂直的性質(zhì)分別進(jìn)行判斷即可.
解答: 解:①若m∥l,n∥l,則根據(jù)公理4可知m∥n成立;   
②若m⊥α,m∥β,則α⊥β成立;
③若m∥α,n∥α,則m∥n不一定成立;    
④若m⊥β,α⊥β,則m∥α或m?α,故④錯(cuò)誤;
故③④是假命題.
故選:D
點(diǎn)評:本題主要考查命題的真假判斷,根據(jù)空間直線和平面之間的位置關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,E、H分別是棱A1B1、C1D1上的點(diǎn)(點(diǎn)E 與B1不重合),且EH∥A1D1;過EH的平面與棱BB1、CC1相交,交點(diǎn)分別為F、G.
(1)證明:AD∥平面EFGH;
(2)在長方體ABCD-A1B1C1D1內(nèi)隨機(jī)選取一點(diǎn),記該點(diǎn)取自于幾何體A1ABFE-D1DCGH 內(nèi)的概率為P,當(dāng)A1E=EB1,B1B=4B1F時(shí),求P的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-3x的單調(diào)遞減區(qū)間是( 。
A、(∞,-1)
B、(1,+∞)
C、(-∞,-1)∪(1,+∞)
D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(wx+θ)(-π<θ<0),y=f(x),周期為π,圖象的一個(gè)對稱中心為(
π
6
,0)

(1)求f(x)的解析式
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間
(3)在△ABC中,a,b,c分別為A,B,C的對邊,S為其面積,若f(
A
2
)=0,b=1,S△ABC=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,有一個(gè)水平放置的透明無蓋的正方體容器,容器高8cm,將一個(gè)球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時(shí)測得水深為6cm,如果不計(jì)容器的厚度,則球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n是不重合的兩條直,α,β是不重合的兩個(gè)平面.則以下結(jié)論正確的是( 。
A、若α⊥β,m⊥α,則m∥β
B、若m∥α,m⊥n,則n⊥α
C、若m⊥α,m⊥β,則α∥β
D、若m∥α,m?β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足約束條件
x≥1
y≤a(a>1)
x-y≤0
,則z=x+y的最大值是4,則a=( 。
A、2B、3C、3或1D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三文科分為四個(gè)班.高三數(shù)學(xué)調(diào)研測試后,隨機(jī)地在各班抽取部分學(xué)生進(jìn)行測試成績統(tǒng)計(jì),各班被抽取的學(xué)生人數(shù)恰好成等差數(shù)列,人數(shù)最少的班被抽取了22人.抽取出來的所有學(xué)生的測試成績統(tǒng)計(jì)結(jié)果的頻率分布條形圖如圖所示,其中120~130(包括120分但不包括130分)的頻率為0.05,此分?jǐn)?shù)段的人數(shù)為5人.
(1)問各班被抽取的學(xué)生人數(shù)各為多少人?
(2)求平均成績;
(3)在抽取的所有學(xué)生中,任取一名學(xué)生,求分?jǐn)?shù)不小于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD為正方形,P是ABCD所成平面外一點(diǎn),P在平面ABCD上的射影恰好是正方形的中心O.Q是CD的中點(diǎn).
(1)若
OQ
=
PQ
+x
PC
+y
PA
,則x=
 
,y=
 
;
(2)若
PA
=x
PO
+y
PQ
+
PD
,則x=
 
,y=
 

查看答案和解析>>

同步練習(xí)冊答案