(本題滿分14分,第1小題6分,第2小題8分)
已知函數(shù),其中常數(shù)a > 0.
(1) 當(dāng)a = 4時(shí),證明函數(shù)f(x)在上是減函數(shù);
(2) 求函數(shù)f(x)的最小值.
(1)任取0<x1<x2≤2,則f(x1)–f(x2)=,
因?yàn)?<x1<x2≤2,所以f(x1)–f(x2)>0,即f(x1)>f(x2);
(2)。
解析試題分析:(1) 當(dāng)時(shí),,…………………………………………1分
任取0<x1<x2≤2,則f(x1)–f(x2)=………………3分
因?yàn)?<x1<x2≤2,所以f(x1)–f(x2)>0,即f(x1)>f(x2)………………………………………5分
所以函數(shù)f(x)在上是減函數(shù);………………………………………………………6分
(2),……………………………………………………7分
當(dāng)且僅當(dāng)時(shí)等號(hào)成立,…………………………………………………………8分
當(dāng),即時(shí),的最小值為,………………………10分
當(dāng),即時(shí),在上單調(diào)遞減,…………………………………11分
所以當(dāng)時(shí),取得最小值為,………………………………………………13分
綜上所述: ………………………………………14分
考點(diǎn):函數(shù)的單調(diào)性和最值;基本不等式。
點(diǎn)評(píng):用定義法證明函數(shù)單調(diào)性的步驟:一設(shè)二作差三變形四判斷符號(hào)五得出結(jié)論,其中最重要的是四變形,最好變成幾個(gè)因式乘積的形式,這樣便于判斷符號(hào)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知命題P:函數(shù)是R上的減函數(shù),命題Q:在 時(shí),不等式恒成立,若命題“”是真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
一片森林原來面積為,計(jì)劃每年砍伐一些樹,且每年砍伐面積的百分比相等,當(dāng)砍伐到面積的一半時(shí),所用時(shí)間是10年,為保護(hù)生態(tài)環(huán)境,森林面積至少要保留原面積的,已知到今年為止,森林剩余面積為原來的.
(Ⅰ)求每年砍伐面積的百分比;
(Ⅱ)到今年為止,該森林已砍伐了多少年?
(Ⅲ)今后最多還能砍伐多少年?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對(duì)于函數(shù),若存在x0∈R,使方程成立,則稱x0為的不動(dòng)點(diǎn),已知函數(shù)(a≠0).
(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)
已知函數(shù).
(1)判斷并證明函數(shù)的單調(diào)性;
(2)若函數(shù)為奇函數(shù),求的值;
(3)在(2)的條件下,若對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)a為何值時(shí),方程有三個(gè)不同的實(shí)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)已知函數(shù),
(1)當(dāng)時(shí),求函數(shù)的極值;
(2) 若在[-1,1]上單調(diào)遞減,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)已知函數(shù)是奇函數(shù):
(1)求實(shí)數(shù)和的值; (2)證明在區(qū)間上的單調(diào)遞減
(3)已知且不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com