(滿分12分)
已知函數(shù).
(1)判斷并證明函數(shù)的單調(diào)性;
(2)若函數(shù)為奇函數(shù),求的值;
(3)在(2)的條件下,若對恒成立,求實數(shù)的取值范圍.
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)
(Ⅰ)若函數(shù)處取得極值,求實數(shù)a的值;
(Ⅱ)在(I)條件下,若直線與函數(shù)的圖象相切,求實數(shù)k的值;
(Ⅲ)記,求滿足條件的實數(shù)a的集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知定義在實數(shù)集上的奇函數(shù)(、)過已知點.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)試證明函數(shù)在區(qū)間是增函數(shù);若函數(shù)在區(qū)間(其中)也是增函數(shù),求的最小值;
(Ⅲ)試討論這個函數(shù)的單調(diào)性,并求它的最大值、最小值,在給出的坐標系(見答題卡)中畫出能體現(xiàn)主要特征的圖簡;
(Ⅳ)求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)f(x)=ax-(a+1)ln(x+1),其中a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)當x>0時,證明不等式:<ln(x+1)<x;
(3)設(shè)f(x)的最小值為g(a),證明不等式:-1<ag(a)<0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分,第1小題6分,第2小題8分)
已知函數(shù),其中常數(shù)a > 0.
(1) 當a = 4時,證明函數(shù)f(x)在上是減函數(shù);
(2) 求函數(shù)f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)處取得極值2。
(Ⅰ)求函數(shù)的表達式;
(Ⅱ)當滿足什么條件時,函數(shù)在區(qū)間上單調(diào)遞增?
(Ⅲ)若為圖象上任意一點,直線與的圖象切于點P,求直線的斜率的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
本題12分)
已知函數(shù).
(1)求的定義域;
(2)在函數(shù)的圖象上是否存在不同的兩點,使得過這兩點的直線平行于x軸;
(3)當,b滿足什么條件時,在上恒取正值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com