設(shè)點A是拋物線y2=4x上一點,點B(1.0),點M是線段AB的中點,若|AB|=3,則M 到直線x=-1的距離為(  )
A、5
B、
3
2
C、2
D、
5
2
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:由題意,點B(1.0)是焦點,直線x=-1是準(zhǔn)線.利用拋物線的定義,可得A到準(zhǔn)線的距離為3,利用梯形中位線的性質(zhì),可得M到直線x=-1的距離.
解答: 解:由題意,點B(1.0)是焦點,直線x=-1是準(zhǔn)線.
利用拋物線的定義,可得A到準(zhǔn)線的距離為3,
∵點M是線段AB的中點,
∴M到直線x=-1的距離為
2+3
2
=
5
2

故選:D.
點評:本題考查M到直線x=-1的距離,考查拋物線的定義,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一正四面體木塊如圖所示,點P是棱VA的中點,過點P將木塊鋸開,使截面平行于棱VB和AC,若木塊的棱長為a,則截面面積為( 。
A、
a2
2
B、
a2
3
C、
a2
4
D、
a2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=
2
2
x
與橢圓在第一象限交于M點,又MF2⊥x軸,F(xiàn)2是橢圓右焦點,另一個焦點為F1,若
MF1
MF2
=2
,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩名籃球運動員在四場比賽中的得分?jǐn)?shù)據(jù)以莖葉圖記錄如圖所示:
(1)求乙球員得分的平均數(shù)和方差;
(2)求甲乙在一場比賽里得分的和的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,則a2的值為( 。
A、12B、9C、6D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E是棱DD1的中點,F(xiàn)是側(cè)面CDD1C1上的動點,且B1F∥平面A1BE,則B1F與平面CDD1C1所成角的正弦值構(gòu)成的集合是 ( 。
A、{2}
B、
2
5
5
C、{t|
2
2
≤t≤
6
3
}
D、{t|
2
5
5
≤t≤
2
3
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2-bx+c>0的解集為(-
1
2
,2),對于a,b,c有以下結(jié)論:(1)a>0;(2)b>0;(3)c>0;(4)a+b+c>0;(5)a-b+c>0,其中正確討論的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知?ABCD中,E是AB的中點,F(xiàn)是BE的中點,DF,CE相較于點O,已知
AB
=
a
,
AD
=
b
,用
a
,
b
的線性組合表示
OD
、
EO

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
b
不共線,
a
b
≠0
,且
c
=
a
-
(
a
a
)
b
a
b
,則向量
a
c
的夾角為( 。
A、
π
2
B、
π
6
C、
π
3
D、0

查看答案和解析>>

同步練習(xí)冊答案