設(shè)計算法求
+
+
+…
的值,要求編寫程序并畫出程序框圖.
考點:設(shè)計程序框圖解決實際問題
專題:算法和程序框圖
分析:由已知中,程序的功能我們可以利用循環(huán)結(jié)構(gòu)來解答本題,因為這是一個累加問題,故循環(huán)前累加器S=0,由于已知中的式子,可得循環(huán)變量k初值為1,步長為1,終值為99,累加量為
,由此易寫出算法步驟,并畫出程序框.
解答:
解:滿足條件的算法步驟如下:
第一步,令s=0,k=1,
第二步,若k≤99成立,則執(zhí)行第三步,否則輸出s,結(jié)束算法;
第三步,s=s+
;
第四步,k=k+1,返回第二步.
滿足條件的程序框圖如下:
點評:本題考查的知識點是程序框圖解決實際問題,其中利用循環(huán)解答累加問題時,關(guān)鍵是根據(jù)已知中的程序確定循環(huán)變量的初值、步長、終值,及累加量的通項公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
函數(shù)y=log
a(x+3)-1(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上(其中m,n>0),則
+
的最小值等于( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足下列條件:
①當(dāng)x∈R時,f(x)的最小值為0,且f(x-1)=f(-x-1)恒成立;
②當(dāng)x∈(0,5)時,2x≤f(x)≤4|x-1|+2恒成立.
(1)求f(1)的值;
(2)求f(x)的解析式;
(3)求最大的實數(shù)m(m>1),使得存在實數(shù)t,只要當(dāng)x∈[1,m]時,就有f(x+t)≤2x成立.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知α,β∈(0,π),則α+β=
是sinα=cosβ的( 。
A、充分不必要條件 |
B、必要不充分條件 |
C、充要條件 |
D、既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
某商場銷售某種商品的經(jīng)驗表明,該產(chǎn)品生產(chǎn)總成本C與產(chǎn)量q(q∈N*)的函數(shù)關(guān)系式為C=100+4q,銷售單價p與產(chǎn)量q的函數(shù)關(guān)系式為p=25-
q.要使每件產(chǎn)品的平均利潤最大,則產(chǎn)量q等于
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
1-4+9-16+…+(-1)n+1n2等于( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若不等式x
2-ax+b<0的解集為(1,2),則不等式
<
的解集為( 。
A、(,+∞) |
B、(-∞,0)∪(,+∞) |
C、(,+∞) |
D、(-∞,0)∪(,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
過圓x
2+y
2=5上一點M(1,2)的圓的切線方程為
.
查看答案和解析>>