【題目】橢圓的上、下焦點分別為,,右頂點為B,且滿足
Ⅰ求橢圓的離心率e;
Ⅱ設P為橢圓上異于頂點的點,以線段PB為直徑的圓經(jīng)過點,問是否存在過的直線與該圓相切?若存在,求出其斜率;若不存在,說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的極坐標方程為,直線,直線 .以極點為原點,極軸為軸的正半軸建立平面直角坐標系.
(1)求直線,的直角坐標方程以及曲線的參數(shù)方程;
(2)已知直線與曲線交于兩點,直線與曲線交于兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若存在常數(shù),使得對定義域內(nèi)的任意,都有成立,則稱函數(shù)在其定義域 上是“利普希茲條件函數(shù)”.
(1)若函數(shù)是“利普希茲條件函數(shù)”,求常數(shù)的最小值;
(2)判斷函數(shù)是否是“利普希茲條件函數(shù)”,若是,請證明,若不是,請說明理由;
(3)若是周期為2的“利普希茲條件函數(shù)”,證明:對任意的實數(shù),都有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列有關平面向量分解定理的四個命題:
(1)一個平面內(nèi)有且只有一對不平行的向量可作為表示該平面所有向量的基;
(2)一個平面內(nèi)有無數(shù)多對不平行向量可作為表示該平面內(nèi)所有向量的基;
(3)平面向量的基向量可能互相垂直;
(4)一個平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個互不平行向量的線性組合.
其中正確命題的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著我國經(jīng)濟的飛速發(fā)展,人民生活水平得到很大提高,汽車已經(jīng)進入千千萬萬的家庭.大部分的車主在購買汽車時,會在轎車或者中作出選擇,為了研究某地區(qū)哪種車型更受歡迎以及汽車一年內(nèi)的行駛里程,某汽車銷售經(jīng)理作出如下統(tǒng)計:
購買了轎車(輛) | 購買了(輛) | |
歲以下車主 | ||
歲以下車主 |
(1)根據(jù)表,是否有的把握認為年齡與購買的汽車車型有關?
(2)圖給出的是名車主上一年汽車的行駛里程,求這名車主上一年汽車的平均行駛里程(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)用分層抽樣的方法從歲以上車主中抽取人,再從這人中隨機抽取人贈送免費保養(yǎng)券,求這人中至少有輛轎車的概率。
附:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點,動點P是圓M:上的任意一點,線段NP的垂直平分線和半徑MP相交于點Q.
求的值,并求動點Q的軌跡C的方程;
若圓的切線l與曲線C相交于A,B兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點P在圓柱的底面圓上,AB為圓的直徑,圓柱的表面積為20π,
(1)求異面直線與AP所成角的大小(結果用反三角函數(shù)值表示);
(2)求點A到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖(1),等腰梯形,,,,,分別是的兩個三等分點,若把等腰梯形沿虛線、折起,使得點和點重合,記為點, 如圖(2).
(1)求證:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設P是橢圓上一點,M,N分別是兩圓(x+4)2+y2=1和(x-4)2+y2=1上的點,則|PM|+|PN|的最小值、最大值分別為 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com