已知x>0,由不等式x+
1
x
≥2
x•
1
x
=2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3
3
x
2
x
2
4
x2
=3,x+
27
x3
=
x
3
+
x
3
+
x
3
+
27
x2
≥4
4
x
3
x
3
x
3
27
x2
=4,….在x>0條件下,請(qǐng)根據(jù)上述不等式歸納出一個(gè)一般性的不等式
 
考點(diǎn):歸納推理
專(zhuān)題:探究型,推理和證明
分析:先對(duì)左式變形,再利用基本不等式化簡(jiǎn).消去根號(hào),得到右式.
解答: 解:根據(jù)題意,分析所給等式的變形過(guò)程可得,先對(duì)左式變形,再利用基本不等式化簡(jiǎn).消去根號(hào),得到右式,則x+
nn
xn
=
x
n
+
x
n
+…+
x
n
+
nn
xn
≥(n+1)
(n+1)
x
n
x
n
•…•
x
n
nn
xn
=n+1

故答案為:x+
nn
xn
=
x
n
+
x
n
+…+
x
n
+
nn
xn
≥(n+1)
(n+1)
x
n
x
n
•…•
x
n
nn
xn
=n+1
點(diǎn)評(píng):本題考查歸納推理,考查學(xué)生分析解決問(wèn)題的能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的方程x2-2x-(m-2)=0與x2+mx+
1
4
m2+m+2=0,若這兩個(gè)方程至少有一個(gè)方程有實(shí)數(shù)解,求實(shí)數(shù)m的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:cosx+cos2x+…+cosnx=
cos
n+1
2
x•sin
n
2
x
sin
x
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

AB是圓O的直徑,D為圓O上一點(diǎn),過(guò)D作圓O的切線(xiàn)交AB延長(zhǎng)線(xiàn)于點(diǎn)C,若DC=2,BC=1,則sin∠DCA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)為a(a≠0),前n項(xiàng)和為Sn,且有Sn+1=tSn+a(t≠0),bn=Sn+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)t=1時(shí),若對(duì)任意n∈N*,都有|bn|≥|b5|,求a的取值范圍;
(3)當(dāng)t≠1時(shí),若cn=2+
n
i=1
bi
,求能夠使數(shù)列{cn}為等比數(shù)列的所有數(shù)對(duì)(a,t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若利用計(jì)算機(jī)在區(qū)間(0,1)上產(chǎn)生兩個(gè)不等的隨機(jī)數(shù)a和b,則方程x=2
2a
-
2b
x
有不等實(shí)數(shù)根的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿(mǎn)足約束條件
x+y-2≤0
x-2y-2≤0
2x-y+2≥0
,若目標(biāo)函數(shù)z=-ax+y取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知lg2
c
a
=4lg
a
b
•lg
b
c
,則a,b,c成
 
數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從一個(gè)棱長(zhǎng)為3的正方體中切去一些部分,得到一個(gè)幾何體,其三視圖如圖,則該幾何體的體積是( 。
A、3B、7C、9D、18

查看答案和解析>>

同步練習(xí)冊(cè)答案