【題目】(本小題滿分14分)已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)證明:當時,;
(Ⅲ)確定實數(shù)的所有可能取值,使得存在,當時,恒有.
【答案】(Ⅰ);(Ⅱ)詳見解析;(Ⅲ).
【解析】
試題分析:(1)先求出函數(shù)的導數(shù),令導函數(shù)大于0,解出即可;(2)構(gòu)造函數(shù)F(x)=f(x)-x+1,先求出函F(x)的導數(shù),根據(jù)函數(shù)的單調(diào)性證明即可;(3)通過討論k的范圍,結(jié)合函數(shù)的單調(diào)性求解即可
試題解析:(1)得.
得,解得
故的單調(diào)遞增區(qū)間是
(2)令,
則有
當時,
所以在上單調(diào)遞減,
故當時,,即當時,
(3)由(Ⅱ)知,當時,不存在滿足題意。
當時,對于,有則
從而不存在滿足題意。
當時,令,
由得,。
解得
當時,,故在內(nèi)單調(diào)遞增。
從而當,即
綜上嗎,k的取值范圍是
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,ABCD是一塊邊長為7米的正方形鐵皮,其中ATN是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個有邊落在BC與CD上的長方形鐵皮,其中P是弧TN上一點.設(shè),長方形的面積為S平方米.
(1)求關(guān)于的函數(shù)解析式;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,由明代數(shù)學家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的值為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知都是定義域為的連續(xù)函數(shù).已知:滿足:①當時,恒成立;②都有.滿足:①都有;②當時,.若關(guān)于的不等式對恒成立,則的取值范圍是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】二次函數(shù)在區(qū)間上有最大值4,最小值0.
(1)求函數(shù)的解析式;
(2)設(shè),若在時恒成立,求的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:()經(jīng)過點,且兩個焦點,的坐標依次為和.
(1)求橢圓的標準方程;
(2)設(shè),是橢圓上的兩個動點,為坐標原點,直線的斜率為,直線的斜率為,若,證明:直線與以原點為圓心的定圓相切,并寫出此定圓的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某網(wǎng)店經(jīng)營的一種商品進行進價是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.
(1)根據(jù)周銷售量圖寫出(件)與單價(元)之間的函數(shù)關(guān)系式;
(2)寫出利潤(元)與單價(元)之間的函數(shù)關(guān)系式;當該商品的銷售價格為多少元時,周利潤最大?并求出最大周利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com