【題目】如圖所示的莖葉圖記錄了甲、乙兩組各5名同學的投籃命中次數,乙組記錄中有一個數據模糊,無法確認,在圖中用表示.
(1)若乙組同學投籃命中次數的平均數比甲組同學的平均數少1,求及乙組同學投籃命中次數的方差;
(2)在(1)的條件下,分別從甲、乙兩組投籃命中次數低于10次的同學中,各隨機選取一名,求這兩名同學的投籃命中次數之和為16的概率.
科目:高中數學 來源: 題型:
【題目】極坐標系中橢圓C的方程為ρ2= ,以極點為原點,極軸為x軸非負半軸,建立平面直角坐標系,且兩坐標系取相同的單位長度.
(1)若橢圓上任一點坐標為P(x,y),求 的取值范圍;
(2)若橢圓的兩條弦AB,CD交于點Q,且直線AB與CD的傾斜角互補,求證:|QA||QB|=|QC||QD|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知曲線C1:y=(x>0)及曲線C2:y= (x>0).C1上的點Pn的橫坐標為an,過C1上的點Pn(n∈N+)作直線平行于x軸,交曲線C2于點Qn,再過點Qn作直線平行于y軸,交曲線C1于點Pn+1.
試求an+1與an之間的關系,并證明a2n-1<<a2n(n∈N+).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱錐P﹣ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD中點,PA⊥底面ABCD,PA=2.
(1)證明:平面PBE⊥平面PAB;
(2)求直線PC與平面PBE所成的角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1的參數方程為 (其中θ為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρcosθ﹣ρsinθ+1=0.
(1)分別寫出曲線C1與曲線C2的普通方程;
(2)若曲線C1與曲線C2交于A,B兩點,求線段AB的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2013年,首都北京經歷了59年來霧霾天氣最多的一個月.經氣象局統(tǒng)計,北京市從1月1日至1月30日的30天里有26天出現霧霾天氣,《環(huán)境空氣質量指數(AQI)技術規(guī)定(試行)》將空氣質量指數分為六級,其中,中度污染(四級)指數為151~200;重度污染(五級)指數為201~300;嚴重污染(六級)指數大于300.下面表1是某觀測點記錄的4天里AQI指數M與當天的空氣水平可見度y(千米)的情況,表2是某氣象觀測點記錄的北京1月1日到1月30日AQI指數頻數的統(tǒng)計結果.
表1
AQI指數M | 900 | 700 | 300 | 100 |
空氣可見度y/千米 | 0.5 | 3.5 | 6.5 | 9.5 |
表2
AQI指數 | [0,200] | (200,400] | (400,600] | (600,800] | (800,1000] |
頻數 | 3 | 6 | 12 | 6 | 3 |
(1)設變量x=,根據表1的數據,求出y關于x的線性回歸方程;
(2)根據表2估計這30天AQI指數的平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A、B、C的對邊分別為a、b、c(a<b<c).已知向量 =(a,c), =(cosC,cosA)滿足 = (a+c).
(1)求證:a+c=2b;
(2)若2csinA﹣ a=0,且c﹣a=8,求△ABC的面積S.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com