【題目】已知函數(shù)

1)求函數(shù)在區(qū)間上的最大、最小值;

2)求證:在區(qū)間上,函數(shù)的圖象在函數(shù)的圖象的下方.

【答案】1)由已知,

當(dāng)時(shí),,

所以函數(shù)在區(qū)間上單調(diào)遞增,

所以函數(shù)在區(qū)間上的最大、最小值分別為,,

所以函數(shù)在區(qū)間上的最大值為,最小值為

2)證明:設(shè),則

因?yàn)?/span>,所以

所以函數(shù)在區(qū)間上單調(diào)遞減,

,所以在區(qū)間上,,即

所以在區(qū)間上函數(shù)的圖象在函數(shù)圖象的下方.

【解析】

(1)求得函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)性,進(jìn)而求解函數(shù)的最值;

(2)由題意,設(shè),求得,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最小值,即作出證明

解:(1)f(x)=x2+ln xf′(x)=x+,

當(dāng)x[1,e]時(shí),f′(x)>0,

所以f(x)max=f(e)=e2+1.

f(x)min=f(1)=.

(2)設(shè)F(x)=x2+ln x-x3,

F′(x)=x+-2x2

當(dāng)x[1,+∞)時(shí),F′(x)<0,

F(1)=-<0x[1,+∞)時(shí)F(x)<0,

所以x2+ln x<x3,得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,btanB+btanA=﹣2ctanB,且a=8,△ABC的面積為 ,則b+c的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,定義域?yàn)閇0,2π],g(x) 為f(x) 的導(dǎo)函數(shù).
(1)求方程g(x)=0 的解集;
(2)求函數(shù)g(x) 的最大值與最小值;
(3)若函數(shù)F(x)=f(x)﹣ax 在定義域上恰有2個(gè)極值點(diǎn),求實(shí)數(shù)a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的莖葉圖記錄了甲、乙兩組各5名同學(xué)的投籃命中次數(shù),乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中用表示.

1)若乙組同學(xué)投籃命中次數(shù)的平均數(shù)比甲組同學(xué)的平均數(shù)少1,求及乙組同學(xué)投籃命中次數(shù)的方差;

2)在(1)的條件下,分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機(jī)選取一名,求這兩名同學(xué)的投籃命中次數(shù)之和為16的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4﹣5:不等式選講
設(shè)函數(shù)f(x)=|2x﹣4|+|x+2|
(1)求函數(shù)y=f(x)的最小值;
(2)若不等式f(x)≥|a+4|﹣|a﹣3|恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=x2﹣ex﹣ax在R上存在單調(diào)遞增區(qū)間,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:m∈R,且m+1≤0,q:x∈R,x2+mx+1>0恒成立,若p∧q為假命題且p∨q為真命題,則m的取值范圍是__________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別是a、b、c,已知向量 =(cosA,cosB), =(a,2c﹣b),且
(1)求角A的大;
(2)若a=4,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+ax2+bx,(a,b∈R).
(1)設(shè)a=1,f(x)在x=1處的切線過點(diǎn)(2,6),求b的值;
(2)設(shè)b=a2+2,求函數(shù)f(x)在區(qū)間[1,4]上的最大值;
(3)定義:一般的,設(shè)函數(shù)g(x)的定義域?yàn)镈,若存在x0∈D,使g(x0)=x0成立,則稱x0為函數(shù)g(x)的不動(dòng)點(diǎn).設(shè)a>0,試問當(dāng)函數(shù)f(x)有兩個(gè)不同的不動(dòng)點(diǎn)時(shí),這兩個(gè)不動(dòng)點(diǎn)能否同時(shí)也是函數(shù)f(x)的極值點(diǎn)?

查看答案和解析>>

同步練習(xí)冊答案