已知雙曲線C的中心在坐標(biāo)原點(diǎn),一個(gè)焦點(diǎn)在拋物線y2=12x的準(zhǔn)線上,且雙曲線C的離心率等于
3
,則雙曲線C的標(biāo)準(zhǔn)方程為( 。
A、
y2
6
-
x2
3
=1
B、
x2
3
-
y2
6
=1
C、
y2
6
-
x2
9
=1
D、
y2
9
-
x2
6
=1
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:先根據(jù)拋物線方程求得準(zhǔn)線方程,進(jìn)而確定雙曲線的焦點(diǎn),求得雙曲線中的c,根據(jù)離心率進(jìn)而求a,最后根據(jù)b2=c2-a2求得b,則雙曲線的方程可得.
解答: 解:由題可設(shè)雙曲線的方程為:
x2
a2
-
y2
b2
=1(a>0,b>0).
∵拋物線y2=12x中2p=12
∴其準(zhǔn)線方程為x=-3,
∵雙曲線的一個(gè)焦點(diǎn)在拋物線y2=12x的準(zhǔn)線上,
∴c=3,
∵雙曲線C的離心率等于
3

∴a=
3
,
∴b2=9-3=6,
∴雙曲線的方程為
x2
3
-
y2
6
=1

故選:B.
點(diǎn)評(píng):本題主要考查了雙曲線的標(biāo)準(zhǔn)方程、圓錐曲線的共同特征,解答關(guān)鍵是對(duì)于圓錐曲線的共同特征的理解與應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中直線C1
x=2+
2
2
t
y=1+
2
2
t
(t是參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中曲線C2的極坐標(biāo)方程為ρ2+2ρcosθ=1(ρ>0),則直線C1和曲線C2的公共點(diǎn)的直角坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|y=
x-1
},B={y|y=
x-1
},則A與B的關(guān)系為( 。
A、A=BB、A⊆B
C、A?BD、A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x)滿足f(x+1)=f(x-1),且當(dāng)x∈[0,1]時(shí),f(x)=x2,則關(guān)于x的方程f(x)=
1
2
|x|在[-1,2]上根的個(gè)數(shù)是( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:平面內(nèi)兩條相交但不垂直的數(shù)軸構(gòu)成的坐標(biāo)系(兩條數(shù)軸的原點(diǎn)重合且單位長度相同)稱為平面斜坐標(biāo)系;在平面斜坐標(biāo)系xOy中,若
OP
=xe1+ye2(其中e1、e2分別是斜坐標(biāo)系x軸、y軸正方向上的單位向量,x,y∈R,O為坐標(biāo)系原點(diǎn)),則有序數(shù)對(duì)(x,y)稱為點(diǎn)P的斜坐標(biāo).在平面斜坐標(biāo)系xOy中,若∠xOy=120°,點(diǎn)A的斜坐標(biāo)為(5,3),直線l過點(diǎn)A且其向上方向與x軸正方向之間所成的角為60°,則直線l在斜坐標(biāo)系xOy中的方程是(  )
A、x-y+2=0
B、x-y-2=0
C、
3
x-y+3-5
3
=0
D、x-
3
y+3
3
-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
f1(x) , x≤0
f2(x), x>0
,則下列命題正確的是( 。
A、若y=f1(x)(x≤0)是增函數(shù),y=f2(x)(x>0)是減函數(shù),則y=f(x)存在最大值
B、若y=f(x)存在最大值,則y=f1(x)(x≤0)是增函數(shù),y=f2(x)(x>0)是減函數(shù)
C、若y=f1(x)(x≤0),y=f2(x)(x>0)均為減函數(shù),則y=f(x)是減函數(shù)
D、若y=f(x)是減函數(shù),則y=f1(x)(x≤0),y=f2(x)(x>0)均為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x=1+a2,a∈N*},P={x|x=a2-4a+5,a∈N*},則M與P的關(guān)系為(  )
A、M?PB、P?M
C、M⊆PD、M?P

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.
(Ⅰ)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
(Ⅱ)求二面角F-BE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx,g(x)=mx-
x3
6
(m∈R);
(1)求曲線y=f(x)在點(diǎn)P(
π
4
,f(
π
4
))處的切線方程;
(2)求函數(shù)g(x)的單調(diào)遞減區(qū)間;
(3)若m=1,證明:當(dāng)x>0時(shí),f(x)<g(x)+
x3
6

查看答案和解析>>

同步練習(xí)冊答案