【題目】食品添加劑會(huì)引起血脂增高、血壓增高、血糖增高等疾病,為了解三高疾病是否與性別有關(guān),醫(yī)院隨機(jī)對(duì)入院的60人進(jìn)行了問卷調(diào)查,得到了如下的列聯(lián)表:

(1)請(qǐng)將列聯(lián)表補(bǔ)充完整;若用分層抽樣的方法在患三高疾病的人群中抽9人,其中女性抽幾人?

患三高疾病

不患三高疾病

合計(jì)

6

30

合計(jì)

36

(2)為了研究三高疾病是否與性別有關(guān),請(qǐng)計(jì)算出統(tǒng)計(jì)量,并說明你有多大把握認(rèn)為患三高疾病與性別有關(guān).

下列的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:

【答案】13;(2)我們有99.5%的把握認(rèn)為患三高疾病與性別有關(guān)

【解析】

1

患三高疾病

不患三高疾病

合計(jì)

24

6

30

12

18

30

合計(jì)

36

24

60

在患三高疾病人群中抽9人,則女性應(yīng)該抽取人數(shù)為12×=3.

2

我們有99.5%的把握認(rèn)為患三高疾病與性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,為等邊三角形,

,,分別為,的中點(diǎn).

(I)求證:平面

(II)求證:平面平面;

(III)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平行四邊形中, , 分別為的中點(diǎn).現(xiàn)把平行四邊形沿折起,如圖(2)所示,連結(jié).

1)求證: ;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)談?wù)摵瘮?shù)的單調(diào)性;

(Ⅱ)若函數(shù)在區(qū)間內(nèi)任取有兩個(gè)不相等的實(shí)數(shù),,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒中裝有編號(hào)分別為1,2,3,4的四個(gè)形狀大小完全相同的小球.

(1)從盒中任取兩球,求取出的球的編號(hào)之和大于5的概率.

(2)從盒中任取一球,記下該球的編號(hào),將球放回,再從盒中任取一球,記下該球的編號(hào),求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù),且相鄰兩對(duì)稱軸間的距離為.

當(dāng)時(shí),求的單調(diào)遞減區(qū)間;

將函數(shù)的圖象沿軸方向向右平移個(gè)單位長度,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),

得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, .

(1)求當(dāng)時(shí), 的值域;

(2)若函數(shù)內(nèi)有且只有一個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:實(shí)數(shù)x滿足,其中,命題實(shí)數(shù)滿足

|x-3|≤1 .

(1)若為真,求實(shí)數(shù)的取值范圍;

(2)若的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓過坐標(biāo)原點(diǎn)且圓心在曲線上.

(1)若圓分別與軸、軸交于點(diǎn)、(不同于原點(diǎn)),求證:的面積為定值;

(2)設(shè)直線與圓交于不同的兩點(diǎn),且,求圓的方程;

(3)設(shè)直線(2)中所求圓交于點(diǎn)、為直線上的動(dòng)點(diǎn),直線,與圓的另一個(gè)交點(diǎn)分別為,,且,在直線異側(cè),求證:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案