精英家教網 > 高中數學 > 題目詳情

【題目】如圖(1),在平行四邊形中, , 分別為的中點.現(xiàn)把平行四邊形沿折起,如圖(2)所示,連結.

1)求證:

2)若,求二面角的余弦值.

【答案】(1)證明見解析;(2.

【解析】試題分析:(1)根據線面垂直的性質定理,證明平面,即可證明結論;(2)建立空間直角坐標系,利用向量法即可求出二面角的余弦值.

試題解析:(1)由已知可得,四邊形, 均為邊長為的菱形,且.在圖 (1)中,取中點, 連結,故是等邊三角形,所以,同理可得, , 又因為,所以平面, 又因為平面, 所以.

2)由已知得, , 所以, .如圖(2),分別以

軸, , 軸的正方向建立空間直角坐標系,得,設平面的法向量, , , , , 所以平面的法向量為, 設平面的法向量

, , , ,, 所以平面的法向量為, 于是,因為二面角的平面角為鈍角,所以二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某四棱錐的三視圖如圖所示,該四棱錐外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】口袋中裝有4個形狀大小完全相同的小球,小球的編號分別為1,2,3,4,甲、乙依次有放回地隨機抽取1個小球,取到小球的編號分別為.在一次抽取中,若有兩人抽取的編號相同,則稱這兩人為“好朋友”,則甲、乙兩人成為“好朋友”的概率為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某人種植一種經濟作物,根據以往的年產量數據,得到年產量頻率分布直方圖如圖所示,以各區(qū)間中點值作為該區(qū)間的年產量,得到平均年產量為455,已知當年產量低于350時,單位售價為20元/,若當年產量不低于350而低于550時,單位售價為15元/,當年產量不低于550時,單位售價為10元/.

1求圖中的值;

2試估計年銷售額大于5000元小于6000元的概率?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠商調查甲、乙兩種不同型號電視機在10個賣場的銷售量(單位:臺),并根據這10個賣場的銷售情況,得到如圖所示的莖葉圖. 為了鼓勵賣場,在同型號電視機的銷售中,該廠商將銷售量高于數據平均數的賣場命名為該型號電視機的星級賣場”.

(1)求在這10個賣場中,甲型號電視機的“星級賣場”的個數;

(2)若在這10個賣場中,乙型號電視機銷售量的平均數為26.7,求a>b的概率;

(3)若a=1,記乙型號電視機銷售量的方差為,根據莖葉圖推斷b為何值時,達到最值.

(只需寫出結論)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對應的邊分別為,

,

(1)求角A,

(2)求證:

(3)若,且BC邊上的中線AM長為,求的面積。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以橢圓的四個頂點為頂點的四邊形的四條邊與共有個交點,且這個交點恰好把圓周六等分.

(1)求橢圓的方程;

(2)若直線相切,且橢圓相交于兩點,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】食品添加劑會引起血脂增高、血壓增高、血糖增高等疾病,為了解三高疾病是否與性別有關,醫(yī)院隨機對入院的60人進行了問卷調查,得到了如下的列聯(lián)表:

(1)請將列聯(lián)表補充完整;若用分層抽樣的方法在患三高疾病的人群中抽9人,其中女性抽幾人?

患三高疾病

不患三高疾病

合計

6

30

合計

36

(2)為了研究三高疾病是否與性別有關,請計算出統(tǒng)計量,并說明你有多大把握認為患三高疾病與性別有關.

下列的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,已知AA1⊥底面ABC,AC⊥BC,四邊形BB1C1C為正方形,設AB1的中點為D,B1C∩BC1=E.

求證:(1)DE∥平面AA1C1C;

(2)BC1⊥平面AB1C.

查看答案和解析>>

同步練習冊答案