【題目】【2016年高考四川理數(shù)】設(shè)函數(shù)f(x)=ax2-a-lnx,其中a ∈R.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)確定a的所有可能取值,使得在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對數(shù)的底數(shù)).
【答案】(Ⅰ)當時,<0,單調(diào)遞減;當時,>0,單調(diào)遞增;(Ⅱ).
【解析】
試題分析:(Ⅰ)對求導,對進行討論,研究的正負,可判斷函數(shù)的單調(diào)性;(Ⅱ)要證明不等式在上恒成立,基本方法是設(shè),當時,,的解不易確定,因此結(jié)合(Ⅰ)的結(jié)論,縮小的范圍,設(shè)=,并設(shè)=,通過研究的單調(diào)性得時,,從而,這樣得出不合題意,又時,的極小值點,且,也不合題意,從而,此時考慮得,得此時單調(diào)遞增,從而有,得出結(jié)論.
試題解析:(I)
<0,在內(nèi)單調(diào)遞減.
由=0,有.
此時,當時,<0,單調(diào)遞減;
當時,>0,單調(diào)遞增.
(II)令=,=.
則=.
而當時,>0,
所以在區(qū)間內(nèi)單調(diào)遞增.
又由=0,有>0,
從而當時,>0.
當,時,=.
故當>在區(qū)間內(nèi)恒成立時,必有.
當時,>1.
由(I)有,從而,
所以此時>在區(qū)間內(nèi)不恒成立.
當時,令,
當時,,
因此,在區(qū)間單調(diào)遞增.
又因為,所以當時, ,即 恒成立.
綜上,.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若f(1)=0,求函數(shù)f(x)的最大值;
(Ⅱ)令,討論函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)若a=2,正實數(shù)x1,x2滿足證明
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,平面平面,底面為梯
形, , , .且與均為正三角形, 為的中點,
為重心.
(1)求證: 平面;
(2)求異面直線與的夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖在△ABC中,已知點D在BC邊上,滿足AD⊥AC,cos ∠BAC=-,AB=3,BD=.
(1)求AD的長;
(2)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017屆廣東省深圳市高三下學期第一次調(diào)研考試(一模)數(shù)學理】已知函數(shù)為自然對數(shù)的底數(shù).
(1)求曲線在處的切線方程;
(2)關(guān)于的不等式在上恒成立,求實數(shù)的值;
(3)關(guān)于的方程有兩個實根,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017屆陜西省西安市鐵一中學高三上學期第五次模擬考試數(shù)學(理)】已知函數(shù),其中常數(shù).
(Ⅰ)討論在上的單調(diào)性;
(Ⅱ)當時,若曲線上總存在相異兩點,使曲線在兩點處的切線互相平行,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于函數(shù)有下列命題:
①函數(shù)的圖象關(guān)于軸對稱;
②在區(qū)間上,函數(shù)是減函數(shù);
③在區(qū)間上,函數(shù)是增函數(shù);
④函數(shù)的值域是 .其中正確命題序號為____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=.(a>0)
(1)若a=1,證明:y=f(x)在R上單調(diào)遞減;
(2)當a>1時,討論f(x)零點的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com