【題目】給出下列兩個(gè)命題:命題p1:a,b∈(0,+∞),當(dāng)a+b=1時(shí), + =4;命題p2:函數(shù)y=ln 是偶函數(shù).則下列命題是真命題的是( )
A.p1∧p2
B.p1∧(¬p2)
C.(¬p1)∨p2
D.(¬p1)∨(¬p2)
【答案】B
【解析】解: 時(shí),符合條件,并能得到 ; ∴命題p1是真命題;
解 得,﹣1<x<1;
∴函數(shù)y= 的定義域?yàn)椋ī?,1);
把函數(shù)中的x換上﹣x得到: ;
∴該函數(shù)為奇函數(shù);
∴命題p2是假命題;
∴p1∧p2是假命題,¬p2是真命題,p1∧(¬p2)是真命題,¬p1是假命題,(¬p1)∨p2是假命題,(¬p1)∧(¬p2)是假命題.
故選B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解復(fù)合命題的真假(“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓:的離心率為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為,,分別為橢圓的左頂點(diǎn)和下頂點(diǎn),為橢圓上位于第一象限內(nèi)的一點(diǎn),交軸于點(diǎn),交軸于點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,求的值;
(3)求證:四邊形的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2,PA= .
(Ⅰ)求證:BD⊥PC;
(Ⅱ)若E是PA的中點(diǎn),求三棱錐P﹣BCE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列中,公差,其前項(xiàng)和為,且滿足:.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)通過公式構(gòu)造一個(gè)新的數(shù)列.若也是等差數(shù)列,求非零常數(shù);
(Ⅲ)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空中有一氣球,在它的正西方A點(diǎn)測(cè)得它的仰角為45°,同時(shí)在它南偏東60°的B點(diǎn),測(cè)得它的仰角為30°,已知A、B兩點(diǎn)間的距離為107米,這兩個(gè)觀測(cè)點(diǎn)均離地1米,則測(cè)量時(shí)氣球離地的距離是_____米.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知M( ,0),N(2,0),曲線C上的任意一點(diǎn)P滿足: = | |.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)曲線C與x軸的交點(diǎn)分別為A、B,過N的任意直線(直線與x軸不重合)與曲線C交于R、Q兩點(diǎn),直線AR與BQ交于點(diǎn)S.問:點(diǎn)S是否在同一直線上?若是,請(qǐng)求出這條直線的方程;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A市某機(jī)構(gòu)為了調(diào)查該市市民對(duì)我國申辦2034年足球世界杯的態(tài)度,隨機(jī)選取了140位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:
支持 | 不支持 | 總計(jì) | |
男性市民 | 60 | ||
女性市民 | 50 | ||
合計(jì) | 70 | 140 |
(I)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(II)利用(1)完成的表格數(shù)據(jù)回答下列問題:
(ⅰ)能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為性別與支持申辦足球世界杯有關(guān);
(ⅱ)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有5位退休老人,其中2位是教師,現(xiàn)從這5位退休老人中隨機(jī)抽取3人,求至多有1位老師的概率。
附:,其中
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D為CC1中點(diǎn).
(1)求證:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com