設變量x,y滿足約束條件
x≥0
x-y+2≥0
2x+y-5≤0
,則目標函數(shù)z=x+y的最大值是( 。
A、3B、4C、5D、6
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用z的幾何意義,即可得到結論.
解答: 解:作出不等式組對應的平面區(qū)域如圖:
由z=x+y得y=-x+z,
平移直線y=-x+z,
由圖象可知當直線y=-x+z經(jīng)過點A時,直線的截距最大,
此時z最大,
x-y+2=0
2x+y-5=0
,解得
x=1
y=3
,
即A(1,3),此時z=1+3=4,
故選:B
點評:本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決線性規(guī)劃題目的常用方法.利用平移確定目標函數(shù)取得最優(yōu)解的條件是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=Asin(ωx+φ)+m的最大值是4,最小值是0,最小正周期
π
2
,直線x=
π
3
是其圖象的一條對稱軸,則下列各式中符合條件的解析式是( 。
A、y=4sin(4x+
π
6
B、y=2sin(4x+
π
6
)+2
C、y=2sin(4x+
π
3
)+2
D、y=2sin(2x+
π
3
)+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集為U,B∩∁UA=B,則A∩B為( 。
A、∅B、A
C、BD、∁UB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

實數(shù)a,b,c成等比數(shù)列,那么關于x的方程ax2+bx+c=0( 。
A、一定沒有實根
B、一定有兩個相同的實根
C、一定有兩個不相同的實根
D、以上三種情況都可能出現(xiàn)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設a=f(ln
1
4
),b=f(log53),c=f(0.4-1.3),則a、b、c的大小關系是( 。
A、c<b<a
B、a<c<b
C、b<a<c
D、c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線a、b是相互不垂直的異面直線,平面α、β滿足a?α,b?β,且α⊥β,則這樣的平面α、β( 。
A、只有一對B、有兩對
C、有無數(shù)對D、不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(1,3),B(4,-1),則下面與向量
AB
垂直的單位向量是( 。
A、(
4
5
3
5
B、(
3
5
,-
4
5
C、(
3
5
,
4
5
D、(-
4
5
,
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a∈R,函數(shù)f(x)=
2
3
x3+2x2+ax+a2
(Ⅰ)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)若函數(shù)f(x)存在兩個極值點x1、x2,求f(x1)+f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐S-ABCD中,SA=AB=2,SB=SD=2
2
,底面ABCD是菱形,
且∠ABC=60°,E為CD的中點.
(1)證明:CD⊥平面SAE;
(2)側棱SB上是否存在點F,使得CF∥平面SAE?并證明你的結論.

查看答案和解析>>

同步練習冊答案