【題目】中國(guó)歷法推測(cè)遵循以測(cè)為輔、以算為主的原則.例如《周髀算經(jīng)》和《易經(jīng)》里對(duì)二十四節(jié)氣的晷(guǐ)影長(zhǎng)的記錄中,冬至和夏至的晷影長(zhǎng)是實(shí)測(cè)得到的,其它節(jié)氣的晷影長(zhǎng)則是按照等差數(shù)列的規(guī)律計(jì)算得出的.下表為《周髀算經(jīng)》對(duì)二十四節(jié)氣晷影長(zhǎng)的記錄,其中寸表示115寸分(1寸=10分).

節(jié)氣

冬至

小寒(大雪)

大寒(小雪)

立春(立冬)

雨水(霜降)

晷影長(zhǎng)(寸)

135

節(jié)氣

驚蟄(寒露)

春分(秋分)

清明(白露)

谷雨(處暑)

立夏(立秋)

晷影長(zhǎng)(寸)

75.5

節(jié)氣

小滿(大暑)

芒種(小暑)

夏至

晷影長(zhǎng)(寸)

16.0

已知《易經(jīng)》中記錄的冬至晷影長(zhǎng)為130.0寸,春分晷影長(zhǎng)為72.4寸,那么《易經(jīng)》中所記錄的夏至的晷影長(zhǎng)應(yīng)為( )

A. 14.8寸B. 15.8寸C. 16.0寸D. 18.4寸

【答案】A

【解析】

設(shè)晷影長(zhǎng)為等差數(shù)列{an},公差為d,130.0,72.4,利用等差數(shù)列的通項(xiàng)公式即可得出.

設(shè)晷影長(zhǎng)為等差數(shù)列{an},公差為d,130.0,72.4,

130.0+6d72.4,解得d=﹣9.6

130.09.6×1214.8

∴《易經(jīng)》中所記錄的驚蟄的晷影長(zhǎng)是14.8寸.

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生社團(tuán)組織活動(dòng)豐富,學(xué)生會(huì)為了解同學(xué)對(duì)社團(tuán)活動(dòng)的滿意程度,隨機(jī)選取了100位同學(xué)進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照[40,50),[50,60),[60,70),,[90,100]分成6組,制成如圖所示頻率分布直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的中位數(shù);

3)現(xiàn)從被調(diào)查的問(wèn)卷滿意度評(píng)分值在[60,80)的學(xué)生中按分層抽樣的方法抽取5人進(jìn)行座談了解,再?gòu)倪@5人中隨機(jī)抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),的圖象與直線分別交于、兩點(diǎn),則(

A.的最小值為

B.使得曲線處的切線平行于曲線處的切線

C.函數(shù)至少存在一個(gè)零點(diǎn)

D.使得曲線在點(diǎn)處的切線也是曲線的切線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線上動(dòng)點(diǎn)與定點(diǎn)的距離和它到定直線的距離的比是常數(shù).若過(guò)的動(dòng)直線與曲線相交于兩點(diǎn).

(1)判斷曲線的名稱并寫出它的標(biāo)準(zhǔn)方程;

(2)是否存在與點(diǎn)不同的定點(diǎn),使得恒成立?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年入冬以來(lái),我市天氣反復(fù).在下圖中統(tǒng)計(jì)了我市上個(gè)月前15天的氣溫,以及相對(duì)去年同期的氣溫差(今年氣溫-去年氣溫,單位:攝氏度),以下判斷錯(cuò)誤的是(

A.今年每天氣溫都比去年氣溫低B.今年的氣溫的平均值比去年低

C.今年8-12號(hào)氣溫持續(xù)上升D.今年8號(hào)氣溫最低

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),點(diǎn),,,動(dòng)點(diǎn)滿足,點(diǎn)為線段的中點(diǎn),拋物線上點(diǎn)的縱坐標(biāo)為,.

(1)求動(dòng)點(diǎn)的軌跡曲線的標(biāo)準(zhǔn)方程及拋物線的標(biāo)準(zhǔn)方程;

(2)若拋物線的準(zhǔn)線上一點(diǎn)滿足,試判斷是否為定值,若是,求這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系,直線過(guò)點(diǎn),且傾斜角為,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線與圓交于、兩點(diǎn),若,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求上的最值;

(2)若,當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求此時(shí)實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)存在極小值點(diǎn),求的取值范圍;

(2)證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案