已知α∈(,π),sinα=,則tan(α+)等于        

 

【答案】

【解析】

試題分析:因?yàn)棣痢?,π),sinα=,所以cosα= =,tanα= =,則tan(α+) 。

考點(diǎn):同角三角函數(shù)間的基本關(guān)系;兩角和與差的正切函數(shù).

點(diǎn)評:此題考查了同角三角函數(shù)間的基本關(guān)系,兩角和與差的正切函數(shù)公式,以及特殊角的三角函數(shù)值,熟練掌握基本關(guān)系及公式是解本題的關(guān)鍵.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△OAP的面積為S,
OA
AP
=1
.如果
1
2
<S<2
,那么向量
OA
AP
的夾角θ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,S為△ABC的面積,若向量
p
=(4,a2+b2-c2),
q
=(
3
,S)
滿足
p
q
,則C=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•佛山一模)某工廠生產(chǎn)某種產(chǎn)品,每日的成本C(單位:元)與日產(chǎn)里x(單位:噸)滿足函數(shù)關(guān)系式C=3+x,每日的銷售額R(單位:元)與日產(chǎn)量x滿足函數(shù)關(guān)系式S=
3x+
k
x-8
+ 5.(0<x<6)
14 (x≥6)
,已知每日的利潤L=S-C,且當(dāng)x=2時(shí),L=3
(Ⅰ)求k的值;
(Ⅱ)當(dāng)日產(chǎn)量為多少噸時(shí),毎日的利潤可以達(dá)到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形ABC的面積S=
a2+b2-c2
4
,則∠C的大小是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文做理不做)已知:正四棱錐S-ABCD的高為
3
,斜高為2,設(shè)E為AB中點(diǎn),F(xiàn)為SC中點(diǎn),M為CD邊上的點(diǎn).
(1)求證:EF∥平面SAD;
(2)試確定點(diǎn)M的位置,使得平面EFM⊥底面ABCD.

查看答案和解析>>

同步練習(xí)冊答案