已知在△ABC中,S為△ABC的面積,若向量
p
=(4,a2+b2-c2),
q
=(
3
,S)
滿足
p
q
,則C=(  )
分析:利用平面向量平行的條件列出關系式,再利用三角形每句話公式表示出S,代入整理后利用余弦定理求出cosC的值,由C為三角形的內角,利用特殊角的三角函數(shù)值即可求出C的度數(shù).
解答:解:∵
p
=(4,a2+b2-c2),
q
=(
3
,S),且S=
1
2
absinC,
p
q
,
∴4S=2absinC=
3
(a2+b2-c2),
∵cosC=
a2+b2-c2
2ab

∴sinC=
3
cosC,即tanC=
3

又C為三角形的內角,
∴C=60°.
故選C
點評:此題考查了余弦定理,平面向量共線(平行)的坐標表示,以及同角三角函數(shù)間的基本關系,熟練掌握余弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•河北模擬)已知在△ABC中,a,b,c分別是內角A,B,C的對邊,且
b
cosB
=
a
cosA
,a2b2cosC=a2+b2-c2,S△ABC=
3
2

(I)求證:△ABC為等腰三角形.
(II)求角A的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,角A、B、C所對的邊分別為a、b、c,向量
m
=(a,b),
n
=(sinA,cosA)

(1)若a=3,b=
3
,且
m
n
平行,求角A的大;
(2)若|
m
|=
41
,c=5,cosC=
2
5
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,a,b,c為內角A,B,C所對的邊長,r為內切圓的半徑,則△ABC的面積S=
1
2
(a+b+c)
•r,將此結論類比到空間,已知在四面體ABCD中,已知在四面體ABCD中,
S1,S2,S3,S4分別為四個面的面積,r為內切球的半徑
S1,S2,S3,S4分別為四個面的面積,r為內切球的半徑
,則
四面體ABCD的體積V=
1
3
(S1+S2+S3+S4).r
四面體ABCD的體積V=
1
3
(S1+S2+S3+S4).r

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•南寧模擬)已知在△ABC中,a,b,c分別是內角A,B,C的對邊,且
b
cosB
=
a
cosA
CA
CB
=
sin2A+sin2B-sin2C
sinAsinB
,S△ABC=
3
2
  求角A的值.

查看答案和解析>>

同步練習冊答案