精英家教網 > 高中數學 > 題目詳情

如圖,直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點EDB垂直BE交圓于點D.
 
(1)證明:DBDC;
(2)設圓的半徑為1,BC,延長CEAB于點F,求△BCF外接圓的半徑.

(1)見解析(2)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,已知點在圓直徑的延長線上,切圓點,的平分線交于點,交點.

(1)求的度數;(2)若,求.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,☉O和☉O′相交于A,B兩點,過A作兩圓的切線分別交兩圓于C、D兩點,連結DB并延長交☉O于點E.證明:

(1)AC·BD=AD·AB;
(2)AC=AE.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,在正△ABC中,點D,E分別在邊AC,AB上,且AD=AC,AE=AB,BD,CE相交于點F.

(1)求證:A,E,F,D四點共圓;
(2)若正△ABC的邊長為2,求A,E,F,D所在圓的半徑.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點DE,F分別為弦AB與弦AC上的點,且BC·AEDC·AF,B,E,F,C四點共圓.
 
(1)證明:CA是△ABC外接圓的直徑;
(2)若DBBEEA,求過B,E,FC四點的圓的面積與△ABC外接圓面積的比值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,AB為⊙O的直徑,直線CD與⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,連接AE,BE.證明:

(1)∠FEB=∠CEB;
(2)EF2=AD·BC.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,AB為⊙O的直徑,AE平分∠BAC交⊙O于E點,過E作⊙O的切線交AC于點D,試判斷△AED的形狀,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,內接于上,于點E,點F在DA的延長線上,,求證:

(1)的切線;
(2).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,點B在圓O上,M為直徑AC上一點,BM的延長線交圓O于N,∠BNA=45°,若圓O的半徑為2,OA=OM,求MN的長.

查看答案和解析>>

同步練習冊答案