如圖,AB為⊙O的直徑,直線CD與⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,連接AE,BE.證明:

(1)∠FEB=∠CEB;
(2)EF2=AD·BC.

見(jiàn)解析

解析證明 (1)由直線CD與⊙O相切,得∠CEB=∠EAB.
由AB為⊙O的直徑,得AE⊥EB,
從而∠EAB+∠EBF=
又EF⊥AB,得∠FEB+∠EBF=,
從而∠FEB=∠EAB.
故∠FEB=∠CEB.
(2)由BC⊥CE,EF⊥AB,
∠FEB=∠CEB,BE是公共邊,
得Rt△BCE≌Rt△BFE,所以BC=BF.
同理可證,得AD=AF.
又在Rt△AEB中,EF⊥AB,
故EF2=AF·BF,所以EF2=AD·BC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,圓的圓心的直角邊上,該圓與直角邊相切,與斜邊交于,.

(1)求的長(zhǎng);
(2)求圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于點(diǎn)D.
 
(1)證明:DBDC;
(2)設(shè)圓的半徑為1,BC,延長(zhǎng)CEAB于點(diǎn)F,求△BCF外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,銳角三角形ABC的內(nèi)心為I,過(guò)點(diǎn)A作直線BI的垂線,垂足為H,點(diǎn)E為圓I與邊CA的切點(diǎn).

(1)求證A,I,H,E四點(diǎn)共圓;
(2)若∠C=50°,求∠IEH的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,AB是⊙O的直徑,BC是⊙O的切線,B為切點(diǎn),OC平行于弦AD,連結(jié)CD.
 
(1)求證:CD是⊙O的切線;
(2)過(guò)點(diǎn)DDEAB于點(diǎn)E,交AC于點(diǎn)P,求證:P點(diǎn)平分線段DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知C點(diǎn)在圓O直徑BE的延長(zhǎng)線上,CA切圓O于A點(diǎn),DC是∠ACB的平分線交AE于點(diǎn)F,交AB于D點(diǎn).

(1)求∠ADF的度數(shù);
(2)AB=AC,求AC∶BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,AD、CE是△ABC中邊BC、AB的高,AD和CE相交于點(diǎn)F.

求證:AF·FD=CF·FE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于點(diǎn)D,DE⊥AC,交AC的延長(zhǎng)線于點(diǎn)E,OE交AD于點(diǎn)F.

(I)求證:DE是⊙O的切線;
(II)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在△ABC中,∠C=90°,∠A=60°,AB=20,過(guò)C作△ABC的外接圓的切線CD,BD⊥CD,BD與外接圓交于點(diǎn)E,求DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案