已知橢圓的長軸長為4,且過點
(1)求橢圓的方程;
(2)設(shè)、是橢圓上的三點,若,點為線段的中點,、兩點的坐標分別為、,求證:
(1);(2)詳見試題解析.

試題分析:(1)由已知列方程組可求得的值,進而可得橢圓的標準方程;(2)利用平面向量的坐標運算和待定系數(shù)法可得線段的中點的軌跡是以,為焦點的橢圓,有橢圓的定義最終可得
試題解析:(1)由已知                      2分
解得.                                 4分
橢圓的方程為.                           5分
(2)設(shè),則,.   6分
,
,即.    7分
是橢圓上一點,所以
,                 8分

,故.    9分
又線段的中點的坐標為,             10分
,11分
線段的中點在橢圓上.         12分
橢圓的兩焦點恰為,          13分
                             14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左右焦點分別為,且經(jīng)過點,為橢圓上的動點,以為圓心,為半徑作圓.
(1)求橢圓的方程;
(2)若圓軸有兩個交點,求點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓的左、右焦點分別為F1(-1,0),F(xiàn)2(1,0),過F1作與x軸不重合的直線l交橢圓于A,B兩點.
(I)若ΔABF2為正三角形,求橢圓的離心率;
(II)若橢圓的離心率滿足,為坐標原點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知對k∈R,直線y-kx-1=0與橢圓恒有公共點,則實數(shù)m的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若過點C(-1,0)且斜率為的直線與橢圓相交于不同的兩點,試問在軸上是否存在點,使是與無關(guān)的常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為橢圓的兩個焦點,P為橢圓上,則此橢圓離心率的取值范圍是                                               (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,橢圓的標準方程為,右焦點為,右準線為,短軸的一個端點. 設(shè)原點到直線的距離為,點到的距離為. 若,則橢圓的離心率為    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)e是橢圓=1的離心率,且e∈(,1),則實數(shù)k的取值范圍是 (  )
A.(0,3)B.(3,)
C.(0,3)∪(,+∞)D.(0,2)

查看答案和解析>>

同步練習冊答案